Loading…

Dynamic functional connectivity in verbal cognitive control and word reading

•Task-preferential modulations of functional connectivity via white matter are visualized.•Task-preferential connectivity enhancement occurs hundreds of ms before overt response.•Reading preferentially enhances connectivity from left occipital-temporal areas.•Stroop task preferentially enhances conn...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2024-10, Vol.300, p.120863-120863, Article 120863
Main Authors: Sakakura, Kazuki, Brennan, Matthew, Sonoda, Masaki, Mitsuhashi, Takumi, Luat, Aimee F, Marupudi, Neena I, Sood, Sandeep, Asano, Eishi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c449t-cfdfd61f2234166d21cb72ef11560ec8643164e83f3bf09b311efca7774fc1db3
container_end_page 120863
container_issue
container_start_page 120863
container_title NeuroImage (Orlando, Fla.)
container_volume 300
creator Sakakura, Kazuki
Brennan, Matthew
Sonoda, Masaki
Mitsuhashi, Takumi
Luat, Aimee F
Marupudi, Neena I
Sood, Sandeep
Asano, Eishi
description •Task-preferential modulations of functional connectivity via white matter are visualized.•Task-preferential connectivity enhancement occurs hundreds of ms before overt response.•Reading preferentially enhances connectivity from left occipital-temporal areas.•Stroop task preferentially enhances connectivity from left middle frontal gyrus. Cognitive control processes enable the suppression of automatic behaviors and the initiation of appropriate responses. The Stroop color naming task serves as a benchmark paradigm for understanding the neurobiological model of verbal cognitive control. Previous research indicates a predominant engagement of the prefrontal and premotor cortex during the Stroop task compared to reading. We aim to further this understanding by creating a dynamic atlas of task-preferential modulations of functional connectivity through white matter. Patients undertook word-reading and Stroop tasks during intracranial EEG recording. We quantified task-related high-gamma amplitude modulations at 547 nonepileptic electrode sites, and a mixed model analysis identified regions and timeframes where these amplitudes differed between tasks. We then visualized white matter pathways with task-preferential functional connectivity enhancements at given moments. Word reading, compared to the Stroop task, exhibited enhanced functional connectivity in inter- and intra-hemispheric white matter pathways from the left occipital-temporal region 350–600 ms before response, including the posterior callosal fibers as well as the left vertical occipital, inferior longitudinal, inferior fronto-occipital, and arcuate fasciculi. The Stroop task showed enhanced functional connectivity in the pathways from the left middle-frontal pre-central gyri, involving the left frontal u-fibers and anterior callosal fibers. Automatic word reading largely utilizes the left occipital-temporal cortices and associated white matter tracts. Verbal cognitive control predominantly involves the left middle frontal and precentral gyri and its connected pathways. Our dynamic tractography atlases may serve as a novel resource providing insights into the unique neural dynamics and pathways of automatic reading and verbal cognitive control.
doi_str_mv 10.1016/j.neuroimage.2024.120863
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7175d58f6bec4b018111d46fe2354723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811924003604</els_id><doaj_id>oai_doaj_org_article_7175d58f6bec4b018111d46fe2354723</doaj_id><sourcerecordid>3114114568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cfdfd61f2234166d21cb72ef11560ec8643164e83f3bf09b311efca7774fc1db3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF1AkLlyyePyV5ISgfFVaiQucLcceB0dZuzjJVvvvcZpSKBckS7bH77yemacoSiA7ICDfDLuAS4r-oHvcUUL5DihpJHtUnANpRdWKmj5ez4JVDUB7VjybpoEQ0gJvnhZnrGWUkpafF_sPp6AP3pRuCWb2MeixNDEEzJejn0-lD-URU3cb7oPPUVwFc4pjqYMtb2KyZUJtfeifF0-cHid8cbdfFN8_ffx2-aXaf_18dfluXxnO27kyzjorwVHKOEhpKZiupugAhCRoGskZSI4Nc6xzpO0YADqj67rmzoDt2EVxtfnaqAd1nfIc0klF7dVtIKZe6TR7M6KqoRZWNE52aHhHIE8DLJcOKRO8pix7vd28rpfugNZgbk2PD0wfvgT_Q_XxqHK1hNRCZIfXdw4p_lxwmtXBTwbHUQeMy6RYRtLWnLVNlr76RzrEJeWZryrgeQm5qppNZVKcpoTuvhogauWvBvWHv1r5q41_Tn35dzf3ib-BZ8H7TYCZz9FjUpPxGAxanzLzPED__19-AV08xtg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114114568</pqid></control><display><type>article</type><title>Dynamic functional connectivity in verbal cognitive control and word reading</title><source>ScienceDirect Freedom Collection</source><creator>Sakakura, Kazuki ; Brennan, Matthew ; Sonoda, Masaki ; Mitsuhashi, Takumi ; Luat, Aimee F ; Marupudi, Neena I ; Sood, Sandeep ; Asano, Eishi</creator><creatorcontrib>Sakakura, Kazuki ; Brennan, Matthew ; Sonoda, Masaki ; Mitsuhashi, Takumi ; Luat, Aimee F ; Marupudi, Neena I ; Sood, Sandeep ; Asano, Eishi</creatorcontrib><description>•Task-preferential modulations of functional connectivity via white matter are visualized.•Task-preferential connectivity enhancement occurs hundreds of ms before overt response.•Reading preferentially enhances connectivity from left occipital-temporal areas.•Stroop task preferentially enhances connectivity from left middle frontal gyrus. Cognitive control processes enable the suppression of automatic behaviors and the initiation of appropriate responses. The Stroop color naming task serves as a benchmark paradigm for understanding the neurobiological model of verbal cognitive control. Previous research indicates a predominant engagement of the prefrontal and premotor cortex during the Stroop task compared to reading. We aim to further this understanding by creating a dynamic atlas of task-preferential modulations of functional connectivity through white matter. Patients undertook word-reading and Stroop tasks during intracranial EEG recording. We quantified task-related high-gamma amplitude modulations at 547 nonepileptic electrode sites, and a mixed model analysis identified regions and timeframes where these amplitudes differed between tasks. We then visualized white matter pathways with task-preferential functional connectivity enhancements at given moments. Word reading, compared to the Stroop task, exhibited enhanced functional connectivity in inter- and intra-hemispheric white matter pathways from the left occipital-temporal region 350–600 ms before response, including the posterior callosal fibers as well as the left vertical occipital, inferior longitudinal, inferior fronto-occipital, and arcuate fasciculi. The Stroop task showed enhanced functional connectivity in the pathways from the left middle-frontal pre-central gyri, involving the left frontal u-fibers and anterior callosal fibers. Automatic word reading largely utilizes the left occipital-temporal cortices and associated white matter tracts. Verbal cognitive control predominantly involves the left middle frontal and precentral gyri and its connected pathways. Our dynamic tractography atlases may serve as a novel resource providing insights into the unique neural dynamics and pathways of automatic reading and verbal cognitive control.</description><identifier>ISSN: 1053-8119</identifier><identifier>ISSN: 1095-9572</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2024.120863</identifier><identifier>PMID: 39322094</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brain ; Convulsions &amp; seizures ; Cortex (frontal) ; Cortex (premotor) ; Dynamic tractography ; Electrodes ; Epilepsy ; Executive function ; Fibers ; Functional brain mapping ; Hemodynamics ; Language ; Neural networks ; Pediatric epilepsy surgery ; Physiological high-frequency oscillation (HFO) ; Prefrontal cortex ; Reading ; Substantia alba ; Temporal lobe ; Tomography</subject><ispartof>NeuroImage (Orlando, Fla.), 2024-10, Vol.300, p.120863-120863, Article 120863</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><rights>2024. The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c449t-cfdfd61f2234166d21cb72ef11560ec8643164e83f3bf09b311efca7774fc1db3</cites><orcidid>0000-0001-8391-4067 ; 0000-0002-4612-5728 ; 0009-0004-3094-6937 ; 0000-0002-7319-9968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39322094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakakura, Kazuki</creatorcontrib><creatorcontrib>Brennan, Matthew</creatorcontrib><creatorcontrib>Sonoda, Masaki</creatorcontrib><creatorcontrib>Mitsuhashi, Takumi</creatorcontrib><creatorcontrib>Luat, Aimee F</creatorcontrib><creatorcontrib>Marupudi, Neena I</creatorcontrib><creatorcontrib>Sood, Sandeep</creatorcontrib><creatorcontrib>Asano, Eishi</creatorcontrib><title>Dynamic functional connectivity in verbal cognitive control and word reading</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>•Task-preferential modulations of functional connectivity via white matter are visualized.•Task-preferential connectivity enhancement occurs hundreds of ms before overt response.•Reading preferentially enhances connectivity from left occipital-temporal areas.•Stroop task preferentially enhances connectivity from left middle frontal gyrus. Cognitive control processes enable the suppression of automatic behaviors and the initiation of appropriate responses. The Stroop color naming task serves as a benchmark paradigm for understanding the neurobiological model of verbal cognitive control. Previous research indicates a predominant engagement of the prefrontal and premotor cortex during the Stroop task compared to reading. We aim to further this understanding by creating a dynamic atlas of task-preferential modulations of functional connectivity through white matter. Patients undertook word-reading and Stroop tasks during intracranial EEG recording. We quantified task-related high-gamma amplitude modulations at 547 nonepileptic electrode sites, and a mixed model analysis identified regions and timeframes where these amplitudes differed between tasks. We then visualized white matter pathways with task-preferential functional connectivity enhancements at given moments. Word reading, compared to the Stroop task, exhibited enhanced functional connectivity in inter- and intra-hemispheric white matter pathways from the left occipital-temporal region 350–600 ms before response, including the posterior callosal fibers as well as the left vertical occipital, inferior longitudinal, inferior fronto-occipital, and arcuate fasciculi. The Stroop task showed enhanced functional connectivity in the pathways from the left middle-frontal pre-central gyri, involving the left frontal u-fibers and anterior callosal fibers. Automatic word reading largely utilizes the left occipital-temporal cortices and associated white matter tracts. Verbal cognitive control predominantly involves the left middle frontal and precentral gyri and its connected pathways. Our dynamic tractography atlases may serve as a novel resource providing insights into the unique neural dynamics and pathways of automatic reading and verbal cognitive control.</description><subject>Brain</subject><subject>Convulsions &amp; seizures</subject><subject>Cortex (frontal)</subject><subject>Cortex (premotor)</subject><subject>Dynamic tractography</subject><subject>Electrodes</subject><subject>Epilepsy</subject><subject>Executive function</subject><subject>Fibers</subject><subject>Functional brain mapping</subject><subject>Hemodynamics</subject><subject>Language</subject><subject>Neural networks</subject><subject>Pediatric epilepsy surgery</subject><subject>Physiological high-frequency oscillation (HFO)</subject><subject>Prefrontal cortex</subject><subject>Reading</subject><subject>Substantia alba</subject><subject>Temporal lobe</subject><subject>Tomography</subject><issn>1053-8119</issn><issn>1095-9572</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF1AkLlyyePyV5ISgfFVaiQucLcceB0dZuzjJVvvvcZpSKBckS7bH77yemacoSiA7ICDfDLuAS4r-oHvcUUL5DihpJHtUnANpRdWKmj5ez4JVDUB7VjybpoEQ0gJvnhZnrGWUkpafF_sPp6AP3pRuCWb2MeixNDEEzJejn0-lD-URU3cb7oPPUVwFc4pjqYMtb2KyZUJtfeifF0-cHid8cbdfFN8_ffx2-aXaf_18dfluXxnO27kyzjorwVHKOEhpKZiupugAhCRoGskZSI4Nc6xzpO0YADqj67rmzoDt2EVxtfnaqAd1nfIc0klF7dVtIKZe6TR7M6KqoRZWNE52aHhHIE8DLJcOKRO8pix7vd28rpfugNZgbk2PD0wfvgT_Q_XxqHK1hNRCZIfXdw4p_lxwmtXBTwbHUQeMy6RYRtLWnLVNlr76RzrEJeWZryrgeQm5qppNZVKcpoTuvhogauWvBvWHv1r5q41_Tn35dzf3ib-BZ8H7TYCZz9FjUpPxGAxanzLzPED__19-AV08xtg</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Sakakura, Kazuki</creator><creator>Brennan, Matthew</creator><creator>Sonoda, Masaki</creator><creator>Mitsuhashi, Takumi</creator><creator>Luat, Aimee F</creator><creator>Marupudi, Neena I</creator><creator>Sood, Sandeep</creator><creator>Asano, Eishi</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8391-4067</orcidid><orcidid>https://orcid.org/0000-0002-4612-5728</orcidid><orcidid>https://orcid.org/0009-0004-3094-6937</orcidid><orcidid>https://orcid.org/0000-0002-7319-9968</orcidid></search><sort><creationdate>20241015</creationdate><title>Dynamic functional connectivity in verbal cognitive control and word reading</title><author>Sakakura, Kazuki ; Brennan, Matthew ; Sonoda, Masaki ; Mitsuhashi, Takumi ; Luat, Aimee F ; Marupudi, Neena I ; Sood, Sandeep ; Asano, Eishi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cfdfd61f2234166d21cb72ef11560ec8643164e83f3bf09b311efca7774fc1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Convulsions &amp; seizures</topic><topic>Cortex (frontal)</topic><topic>Cortex (premotor)</topic><topic>Dynamic tractography</topic><topic>Electrodes</topic><topic>Epilepsy</topic><topic>Executive function</topic><topic>Fibers</topic><topic>Functional brain mapping</topic><topic>Hemodynamics</topic><topic>Language</topic><topic>Neural networks</topic><topic>Pediatric epilepsy surgery</topic><topic>Physiological high-frequency oscillation (HFO)</topic><topic>Prefrontal cortex</topic><topic>Reading</topic><topic>Substantia alba</topic><topic>Temporal lobe</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakakura, Kazuki</creatorcontrib><creatorcontrib>Brennan, Matthew</creatorcontrib><creatorcontrib>Sonoda, Masaki</creatorcontrib><creatorcontrib>Mitsuhashi, Takumi</creatorcontrib><creatorcontrib>Luat, Aimee F</creatorcontrib><creatorcontrib>Marupudi, Neena I</creatorcontrib><creatorcontrib>Sood, Sandeep</creatorcontrib><creatorcontrib>Asano, Eishi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakakura, Kazuki</au><au>Brennan, Matthew</au><au>Sonoda, Masaki</au><au>Mitsuhashi, Takumi</au><au>Luat, Aimee F</au><au>Marupudi, Neena I</au><au>Sood, Sandeep</au><au>Asano, Eishi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic functional connectivity in verbal cognitive control and word reading</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>300</volume><spage>120863</spage><epage>120863</epage><pages>120863-120863</pages><artnum>120863</artnum><issn>1053-8119</issn><issn>1095-9572</issn><eissn>1095-9572</eissn><abstract>•Task-preferential modulations of functional connectivity via white matter are visualized.•Task-preferential connectivity enhancement occurs hundreds of ms before overt response.•Reading preferentially enhances connectivity from left occipital-temporal areas.•Stroop task preferentially enhances connectivity from left middle frontal gyrus. Cognitive control processes enable the suppression of automatic behaviors and the initiation of appropriate responses. The Stroop color naming task serves as a benchmark paradigm for understanding the neurobiological model of verbal cognitive control. Previous research indicates a predominant engagement of the prefrontal and premotor cortex during the Stroop task compared to reading. We aim to further this understanding by creating a dynamic atlas of task-preferential modulations of functional connectivity through white matter. Patients undertook word-reading and Stroop tasks during intracranial EEG recording. We quantified task-related high-gamma amplitude modulations at 547 nonepileptic electrode sites, and a mixed model analysis identified regions and timeframes where these amplitudes differed between tasks. We then visualized white matter pathways with task-preferential functional connectivity enhancements at given moments. Word reading, compared to the Stroop task, exhibited enhanced functional connectivity in inter- and intra-hemispheric white matter pathways from the left occipital-temporal region 350–600 ms before response, including the posterior callosal fibers as well as the left vertical occipital, inferior longitudinal, inferior fronto-occipital, and arcuate fasciculi. The Stroop task showed enhanced functional connectivity in the pathways from the left middle-frontal pre-central gyri, involving the left frontal u-fibers and anterior callosal fibers. Automatic word reading largely utilizes the left occipital-temporal cortices and associated white matter tracts. Verbal cognitive control predominantly involves the left middle frontal and precentral gyri and its connected pathways. Our dynamic tractography atlases may serve as a novel resource providing insights into the unique neural dynamics and pathways of automatic reading and verbal cognitive control.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39322094</pmid><doi>10.1016/j.neuroimage.2024.120863</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8391-4067</orcidid><orcidid>https://orcid.org/0000-0002-4612-5728</orcidid><orcidid>https://orcid.org/0009-0004-3094-6937</orcidid><orcidid>https://orcid.org/0000-0002-7319-9968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2024-10, Vol.300, p.120863-120863, Article 120863
issn 1053-8119
1095-9572
1095-9572
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7175d58f6bec4b018111d46fe2354723
source ScienceDirect Freedom Collection
subjects Brain
Convulsions & seizures
Cortex (frontal)
Cortex (premotor)
Dynamic tractography
Electrodes
Epilepsy
Executive function
Fibers
Functional brain mapping
Hemodynamics
Language
Neural networks
Pediatric epilepsy surgery
Physiological high-frequency oscillation (HFO)
Prefrontal cortex
Reading
Substantia alba
Temporal lobe
Tomography
title Dynamic functional connectivity in verbal cognitive control and word reading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20functional%20connectivity%20in%20verbal%20cognitive%20control%20and%20word%20reading&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Sakakura,%20Kazuki&rft.date=2024-10-15&rft.volume=300&rft.spage=120863&rft.epage=120863&rft.pages=120863-120863&rft.artnum=120863&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2024.120863&rft_dat=%3Cproquest_doaj_%3E3114114568%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-cfdfd61f2234166d21cb72ef11560ec8643164e83f3bf09b311efca7774fc1db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3114114568&rft_id=info:pmid/39322094&rfr_iscdi=true