Loading…

Grain-Size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials

The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In add...

Full description

Saved in:
Bibliographic Details
Published in:KONA Powder and Particle Journal 2022/01/10, Vol.39, pp.193-207
Main Authors: Poorsolhjouy, Payam, Misra, Anil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c579t-69c3393e429b81c351db0cc9f367b01cdce0e89d6c752fa31d9cf9c8fd66203
cites cdi_FETCH-LOGICAL-c579t-69c3393e429b81c351db0cc9f367b01cdce0e89d6c752fa31d9cf9c8fd66203
container_end_page 207
container_issue
container_start_page 193
container_title KONA Powder and Particle Journal
container_volume 39
creator Poorsolhjouy, Payam
Misra, Anil
description The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.
doi_str_mv 10.14356/kona.2022001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_717aa6af22f74b2c853b1634a2a03bd9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_717aa6af22f74b2c853b1634a2a03bd9</doaj_id><sourcerecordid>2644084213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-69c3393e429b81c351db0cc9f367b01cdce0e89d6c752fa31d9cf9c8fd66203</originalsourceid><addsrcrecordid>eNo9kctPHDEMxiPUSqwox94jcR6a1-RxLFugSCAO9NRL5Mk4bJbphCazSPSv7-yD9cGW7J8_W_oI-crZJVey1d9e8giXggnBGD8hC8GtadpWmk9kwYS1jWqlOiXnta7ZNgzTVi7I79sCaWye0j-k1zFimCrNI33AsIIxBRjoFa7gLeVCYezpDaRhU5DmSH_gWJEu8wprekM664ybAQp9gAlLgqF-IZ_jXPD8UM_I0831r-XP5v7x9m75_b4JrXFTo12Q0klUwnWWB9nyvmMhuCi16RgPfUCG1vU6mFZEkLx3IbpgY6-1YPKM3O1V-wxr_1rSHyjvPkPyu0Yuzx7KlMKA3nADoCEKEY3qRLCt7LiWCgQw2fVu1rrYa72W_HeDdfLrvCnj_LwXWilmleByppo9FUqutWA8XuXM77zwWy_8wYuZv9rz6zrBMx7pj7d2sHSebdNh6TicbSgeR_kfSsiTOw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644084213</pqid></control><display><type>article</type><title>Grain-Size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials</title><source>Full-Text Journals in Chemistry (Open access)</source><creator>Poorsolhjouy, Payam ; Misra, Anil</creator><creatorcontrib>Poorsolhjouy, Payam ; Misra, Anil</creatorcontrib><description>The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.</description><identifier>ISSN: 0288-4534</identifier><identifier>EISSN: 2187-5537</identifier><identifier>DOI: 10.14356/kona.2022001</identifier><language>eng</language><publisher>Hirakata-sh: Hosokawa Powder Technology Foundation</publisher><subject>brittle to ductile ; Continuum modeling ; Damage assessment ; Deformation ; Deformation effects ; Density ; Ductile-brittle transition ; Failure ; Grain size ; grain sizes ; Granular materials ; granular micromechanics ; Mathematical morphology ; Mechanical analysis ; Mechanical properties ; Micromechanics ; Morphology ; Size effects ; Stiffness ; triaxial compression ; Triaxial tests ; yield ; Yield stress</subject><ispartof>KONA Powder and Particle Journal, 2022/01/10, Vol.39, pp.193-207</ispartof><rights>2022 The Author</rights><rights>Copyright Hosokawa Powder Technology Foundation 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-69c3393e429b81c351db0cc9f367b01cdce0e89d6c752fa31d9cf9c8fd66203</citedby><cites>FETCH-LOGICAL-c579t-69c3393e429b81c351db0cc9f367b01cdce0e89d6c752fa31d9cf9c8fd66203</cites><orcidid>0000-0002-9761-2358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Poorsolhjouy, Payam</creatorcontrib><creatorcontrib>Misra, Anil</creatorcontrib><title>Grain-Size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials</title><title>KONA Powder and Particle Journal</title><addtitle>KONA</addtitle><description>The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.</description><subject>brittle to ductile</subject><subject>Continuum modeling</subject><subject>Damage assessment</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Density</subject><subject>Ductile-brittle transition</subject><subject>Failure</subject><subject>Grain size</subject><subject>grain sizes</subject><subject>Granular materials</subject><subject>granular micromechanics</subject><subject>Mathematical morphology</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Morphology</subject><subject>Size effects</subject><subject>Stiffness</subject><subject>triaxial compression</subject><subject>Triaxial tests</subject><subject>yield</subject><subject>Yield stress</subject><issn>0288-4534</issn><issn>2187-5537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kctPHDEMxiPUSqwox94jcR6a1-RxLFugSCAO9NRL5Mk4bJbphCazSPSv7-yD9cGW7J8_W_oI-crZJVey1d9e8giXggnBGD8hC8GtadpWmk9kwYS1jWqlOiXnta7ZNgzTVi7I79sCaWye0j-k1zFimCrNI33AsIIxBRjoFa7gLeVCYezpDaRhU5DmSH_gWJEu8wprekM664ybAQp9gAlLgqF-IZ_jXPD8UM_I0831r-XP5v7x9m75_b4JrXFTo12Q0klUwnWWB9nyvmMhuCi16RgPfUCG1vU6mFZEkLx3IbpgY6-1YPKM3O1V-wxr_1rSHyjvPkPyu0Yuzx7KlMKA3nADoCEKEY3qRLCt7LiWCgQw2fVu1rrYa72W_HeDdfLrvCnj_LwXWilmleByppo9FUqutWA8XuXM77zwWy_8wYuZv9rz6zrBMx7pj7d2sHSebdNh6TicbSgeR_kfSsiTOw</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Poorsolhjouy, Payam</creator><creator>Misra, Anil</creator><general>Hosokawa Powder Technology Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9761-2358</orcidid></search><sort><creationdate>20220110</creationdate><title>Grain-Size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials</title><author>Poorsolhjouy, Payam ; Misra, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-69c3393e429b81c351db0cc9f367b01cdce0e89d6c752fa31d9cf9c8fd66203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>brittle to ductile</topic><topic>Continuum modeling</topic><topic>Damage assessment</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Density</topic><topic>Ductile-brittle transition</topic><topic>Failure</topic><topic>Grain size</topic><topic>grain sizes</topic><topic>Granular materials</topic><topic>granular micromechanics</topic><topic>Mathematical morphology</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Morphology</topic><topic>Size effects</topic><topic>Stiffness</topic><topic>triaxial compression</topic><topic>Triaxial tests</topic><topic>yield</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poorsolhjouy, Payam</creatorcontrib><creatorcontrib>Misra, Anil</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>KONA Powder and Particle Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poorsolhjouy, Payam</au><au>Misra, Anil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain-Size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials</atitle><jtitle>KONA Powder and Particle Journal</jtitle><addtitle>KONA</addtitle><date>2022-01-10</date><risdate>2022</risdate><volume>39</volume><spage>193</spage><epage>207</epage><pages>193-207</pages><artnum>2022001</artnum><issn>0288-4534</issn><eissn>2187-5537</eissn><abstract>The grain sizes can significantly influence the granular mechano-morphology, and consequently, the macro-scale mechanical response. From a purely geometric viewpoint, changing grain size will affect the volumetric number density of grain-pair interactions as well as the neighborhood geometry. In addition, changing grain size can influence initial stiffness and damage behavior of grain-pair interactions. The granular micromechanics approach (GMA), which provides a paradigm for bridging the grain-scale to continuum models, has the capability of describing the grain size influence in terms of both geometric effects and grain-pair deformation/dissipation effects. Here the GMA based Cauchy-type continuum model is enhanced using simple power laws to simulate the effect of grain size upon the volumetric number density of grain-pair interactions, and the parameters governing grain-pair deformation and dissipation mechanisms. The enhanced model is applied to predict the macroscopic response of cohesive granular solids under conventional triaxial tests. The results show that decreasing grain-sizes can trigger brittle-to-ductile transition in failure. Grain size is found to affect the compression/dilatation behavior as well as the post-peak softening/hardening of granular materials. The macro-scale failure/yield stress is also found to have an inverse relationship with grain-sizes in consonance with what has been reported in the literature.</abstract><cop>Hirakata-sh</cop><pub>Hosokawa Powder Technology Foundation</pub><doi>10.14356/kona.2022001</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9761-2358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0288-4534
ispartof KONA Powder and Particle Journal, 2022/01/10, Vol.39, pp.193-207
issn 0288-4534
2187-5537
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_717aa6af22f74b2c853b1634a2a03bd9
source Full-Text Journals in Chemistry (Open access)
subjects brittle to ductile
Continuum modeling
Damage assessment
Deformation
Deformation effects
Density
Ductile-brittle transition
Failure
Grain size
grain sizes
Granular materials
granular micromechanics
Mathematical morphology
Mechanical analysis
Mechanical properties
Micromechanics
Morphology
Size effects
Stiffness
triaxial compression
Triaxial tests
yield
Yield stress
title Grain-Size Effects on Mechanical Behavior and Failure of Dense Cohesive Granular Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain-Size%20Effects%20on%20Mechanical%20Behavior%20and%20Failure%20of%20Dense%20Cohesive%20Granular%20Materials&rft.jtitle=KONA%20Powder%20and%20Particle%20Journal&rft.au=Poorsolhjouy,%20Payam&rft.date=2022-01-10&rft.volume=39&rft.spage=193&rft.epage=207&rft.pages=193-207&rft.artnum=2022001&rft.issn=0288-4534&rft.eissn=2187-5537&rft_id=info:doi/10.14356/kona.2022001&rft_dat=%3Cproquest_doaj_%3E2644084213%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-69c3393e429b81c351db0cc9f367b01cdce0e89d6c752fa31d9cf9c8fd66203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2644084213&rft_id=info:pmid/&rfr_iscdi=true