Loading…
Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy
The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitud...
Saved in:
Published in: | SLAS technology 2023-04, Vol.28 (2), p.63-69 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3 |
container_end_page | 69 |
container_issue | 2 |
container_start_page | 63 |
container_title | SLAS technology |
container_volume | 28 |
creator | Choi, Jeonghoon Kii, Hiroaki Nelson, Justin Yamazaki, Yoichi Yanagawa, Fumiki Kitajima, Atsushi Uozumi, Takayuki Kiyota, Yasujiro Doshi, Dimple Rhodes, Kenneth Scannevin, Robert Sadlish, Heather Chung, Chee Yeun |
description | The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases. |
doi_str_mv | 10.1016/j.slast.2022.11.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_718216d2882f4578a15d3fa8eb3f2afb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S247263032205186X</els_id><doaj_id>oai_doaj_org_article_718216d2882f4578a15d3fa8eb3f2afb</doaj_id><sourcerecordid>2746391205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3</originalsourceid><addsrcrecordid>eNp9UcuO0zAUjRCIGQ3zBUjISzYNfsSJi8SiGvEYaSQ2sLYc-7p1cexgO5X6Dfw0bjt0ycr21Xnc49M0bwluCSb9h32bvcqlpZjSlpAWY_aiuaXdQFc9I-Tl9Y7ZTXOf8x5jTIae9Wx43dywvuNccHHb_NksJU6qgEHKb2NyZTchAwfwcZ4gFFQiUjlDzigv6eAOyqNo0W6ZVEABlhRDRkt2YYt8DFtXFuNCxZwmHlYavEclKf2rvj-izTx7p1VxMZyE8zEs2oMLcVZld3zTvLLKZ7h_Pu-an18-_3j4tnr6_vXxYfO00h3FZUUHJoAL0mHDMbdrzbvRmPVgeU-pFaano10PhA1AqTZKULJmYuTE1uwdsyO7ax4vuiaqvZyTm1Q6yqicPA9i2kqViqubyYFUem-oENR2fBCKcMOsEjAyS9VZ6_1Fa07x9wK5yMnlU2oVIC5Z0qHr2ZpQzCuUXaA6xZwT2Ks1wfJUqtzLc6nyVKokRNZSK-vds8EyTmCunH8VVsCnCwDqlx0cJJm1g6DBuAS61EzuvwZ_AcL7trY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746391205</pqid></control><display><type>article</type><title>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</title><source>Elsevier ScienceDirect Journals</source><creator>Choi, Jeonghoon ; Kii, Hiroaki ; Nelson, Justin ; Yamazaki, Yoichi ; Yanagawa, Fumiki ; Kitajima, Atsushi ; Uozumi, Takayuki ; Kiyota, Yasujiro ; Doshi, Dimple ; Rhodes, Kenneth ; Scannevin, Robert ; Sadlish, Heather ; Chung, Chee Yeun</creator><creatorcontrib>Choi, Jeonghoon ; Kii, Hiroaki ; Nelson, Justin ; Yamazaki, Yoichi ; Yanagawa, Fumiki ; Kitajima, Atsushi ; Uozumi, Takayuki ; Kiyota, Yasujiro ; Doshi, Dimple ; Rhodes, Kenneth ; Scannevin, Robert ; Sadlish, Heather ; Chung, Chee Yeun</creatorcontrib><description>The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.</description><identifier>ISSN: 2472-6303</identifier><identifier>EISSN: 2472-6311</identifier><identifier>DOI: 10.1016/j.slast.2022.11.003</identifier><identifier>PMID: 36455858</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Alpha-synuclein ; alpha-Synuclein - genetics ; alpha-Synuclein - metabolism ; Automated analysis ; Cell Tracking ; CL-Quant ; Humans ; Neuronal survival assay ; Neurons - metabolism ; Parkinson's disease ; Single cell tracking ; Synucleinopathies - metabolism</subject><ispartof>SLAS technology, 2023-04, Vol.28 (2), p.63-69</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3</cites><orcidid>0000-0003-1131-4745 ; 0000-0002-5515-650X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S247263032205186X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36455858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Jeonghoon</creatorcontrib><creatorcontrib>Kii, Hiroaki</creatorcontrib><creatorcontrib>Nelson, Justin</creatorcontrib><creatorcontrib>Yamazaki, Yoichi</creatorcontrib><creatorcontrib>Yanagawa, Fumiki</creatorcontrib><creatorcontrib>Kitajima, Atsushi</creatorcontrib><creatorcontrib>Uozumi, Takayuki</creatorcontrib><creatorcontrib>Kiyota, Yasujiro</creatorcontrib><creatorcontrib>Doshi, Dimple</creatorcontrib><creatorcontrib>Rhodes, Kenneth</creatorcontrib><creatorcontrib>Scannevin, Robert</creatorcontrib><creatorcontrib>Sadlish, Heather</creatorcontrib><creatorcontrib>Chung, Chee Yeun</creatorcontrib><title>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</title><title>SLAS technology</title><addtitle>SLAS Technol</addtitle><description>The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.</description><subject>Algorithms</subject><subject>Alpha-synuclein</subject><subject>alpha-Synuclein - genetics</subject><subject>alpha-Synuclein - metabolism</subject><subject>Automated analysis</subject><subject>Cell Tracking</subject><subject>CL-Quant</subject><subject>Humans</subject><subject>Neuronal survival assay</subject><subject>Neurons - metabolism</subject><subject>Parkinson's disease</subject><subject>Single cell tracking</subject><subject>Synucleinopathies - metabolism</subject><issn>2472-6303</issn><issn>2472-6311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UcuO0zAUjRCIGQ3zBUjISzYNfsSJi8SiGvEYaSQ2sLYc-7p1cexgO5X6Dfw0bjt0ycr21Xnc49M0bwluCSb9h32bvcqlpZjSlpAWY_aiuaXdQFc9I-Tl9Y7ZTXOf8x5jTIae9Wx43dywvuNccHHb_NksJU6qgEHKb2NyZTchAwfwcZ4gFFQiUjlDzigv6eAOyqNo0W6ZVEABlhRDRkt2YYt8DFtXFuNCxZwmHlYavEclKf2rvj-izTx7p1VxMZyE8zEs2oMLcVZld3zTvLLKZ7h_Pu-an18-_3j4tnr6_vXxYfO00h3FZUUHJoAL0mHDMbdrzbvRmPVgeU-pFaano10PhA1AqTZKULJmYuTE1uwdsyO7ax4vuiaqvZyTm1Q6yqicPA9i2kqViqubyYFUem-oENR2fBCKcMOsEjAyS9VZ6_1Fa07x9wK5yMnlU2oVIC5Z0qHr2ZpQzCuUXaA6xZwT2Ks1wfJUqtzLc6nyVKokRNZSK-vds8EyTmCunH8VVsCnCwDqlx0cJJm1g6DBuAS61EzuvwZ_AcL7trY</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Choi, Jeonghoon</creator><creator>Kii, Hiroaki</creator><creator>Nelson, Justin</creator><creator>Yamazaki, Yoichi</creator><creator>Yanagawa, Fumiki</creator><creator>Kitajima, Atsushi</creator><creator>Uozumi, Takayuki</creator><creator>Kiyota, Yasujiro</creator><creator>Doshi, Dimple</creator><creator>Rhodes, Kenneth</creator><creator>Scannevin, Robert</creator><creator>Sadlish, Heather</creator><creator>Chung, Chee Yeun</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1131-4745</orcidid><orcidid>https://orcid.org/0000-0002-5515-650X</orcidid></search><sort><creationdate>202304</creationdate><title>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</title><author>Choi, Jeonghoon ; Kii, Hiroaki ; Nelson, Justin ; Yamazaki, Yoichi ; Yanagawa, Fumiki ; Kitajima, Atsushi ; Uozumi, Takayuki ; Kiyota, Yasujiro ; Doshi, Dimple ; Rhodes, Kenneth ; Scannevin, Robert ; Sadlish, Heather ; Chung, Chee Yeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alpha-synuclein</topic><topic>alpha-Synuclein - genetics</topic><topic>alpha-Synuclein - metabolism</topic><topic>Automated analysis</topic><topic>Cell Tracking</topic><topic>CL-Quant</topic><topic>Humans</topic><topic>Neuronal survival assay</topic><topic>Neurons - metabolism</topic><topic>Parkinson's disease</topic><topic>Single cell tracking</topic><topic>Synucleinopathies - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jeonghoon</creatorcontrib><creatorcontrib>Kii, Hiroaki</creatorcontrib><creatorcontrib>Nelson, Justin</creatorcontrib><creatorcontrib>Yamazaki, Yoichi</creatorcontrib><creatorcontrib>Yanagawa, Fumiki</creatorcontrib><creatorcontrib>Kitajima, Atsushi</creatorcontrib><creatorcontrib>Uozumi, Takayuki</creatorcontrib><creatorcontrib>Kiyota, Yasujiro</creatorcontrib><creatorcontrib>Doshi, Dimple</creatorcontrib><creatorcontrib>Rhodes, Kenneth</creatorcontrib><creatorcontrib>Scannevin, Robert</creatorcontrib><creatorcontrib>Sadlish, Heather</creatorcontrib><creatorcontrib>Chung, Chee Yeun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>SLAS technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jeonghoon</au><au>Kii, Hiroaki</au><au>Nelson, Justin</au><au>Yamazaki, Yoichi</au><au>Yanagawa, Fumiki</au><au>Kitajima, Atsushi</au><au>Uozumi, Takayuki</au><au>Kiyota, Yasujiro</au><au>Doshi, Dimple</au><au>Rhodes, Kenneth</au><au>Scannevin, Robert</au><au>Sadlish, Heather</au><au>Chung, Chee Yeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</atitle><jtitle>SLAS technology</jtitle><addtitle>SLAS Technol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>28</volume><issue>2</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>2472-6303</issn><eissn>2472-6311</eissn><abstract>The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36455858</pmid><doi>10.1016/j.slast.2022.11.003</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1131-4745</orcidid><orcidid>https://orcid.org/0000-0002-5515-650X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2472-6303 |
ispartof | SLAS technology, 2023-04, Vol.28 (2), p.63-69 |
issn | 2472-6303 2472-6311 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_718216d2882f4578a15d3fa8eb3f2afb |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Alpha-synuclein alpha-Synuclein - genetics alpha-Synuclein - metabolism Automated analysis Cell Tracking CL-Quant Humans Neuronal survival assay Neurons - metabolism Parkinson's disease Single cell tracking Synucleinopathies - metabolism |
title | Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20algorithm%20development%20to%20assess%20survival%20of%20human%20neurons%20using%20longitudinal%20single-cell%20tracking:%20Application%20to%20synucleinopathy&rft.jtitle=SLAS%20technology&rft.au=Choi,%20Jeonghoon&rft.date=2023-04&rft.volume=28&rft.issue=2&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=2472-6303&rft.eissn=2472-6311&rft_id=info:doi/10.1016/j.slast.2022.11.003&rft_dat=%3Cproquest_doaj_%3E2746391205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2746391205&rft_id=info:pmid/36455858&rfr_iscdi=true |