Loading…

Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy

The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitud...

Full description

Saved in:
Bibliographic Details
Published in:SLAS technology 2023-04, Vol.28 (2), p.63-69
Main Authors: Choi, Jeonghoon, Kii, Hiroaki, Nelson, Justin, Yamazaki, Yoichi, Yanagawa, Fumiki, Kitajima, Atsushi, Uozumi, Takayuki, Kiyota, Yasujiro, Doshi, Dimple, Rhodes, Kenneth, Scannevin, Robert, Sadlish, Heather, Chung, Chee Yeun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3
container_end_page 69
container_issue 2
container_start_page 63
container_title SLAS technology
container_volume 28
creator Choi, Jeonghoon
Kii, Hiroaki
Nelson, Justin
Yamazaki, Yoichi
Yanagawa, Fumiki
Kitajima, Atsushi
Uozumi, Takayuki
Kiyota, Yasujiro
Doshi, Dimple
Rhodes, Kenneth
Scannevin, Robert
Sadlish, Heather
Chung, Chee Yeun
description The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.
doi_str_mv 10.1016/j.slast.2022.11.003
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_718216d2882f4578a15d3fa8eb3f2afb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S247263032205186X</els_id><doaj_id>oai_doaj_org_article_718216d2882f4578a15d3fa8eb3f2afb</doaj_id><sourcerecordid>2746391205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3</originalsourceid><addsrcrecordid>eNp9UcuO0zAUjRCIGQ3zBUjISzYNfsSJi8SiGvEYaSQ2sLYc-7p1cexgO5X6Dfw0bjt0ycr21Xnc49M0bwluCSb9h32bvcqlpZjSlpAWY_aiuaXdQFc9I-Tl9Y7ZTXOf8x5jTIae9Wx43dywvuNccHHb_NksJU6qgEHKb2NyZTchAwfwcZ4gFFQiUjlDzigv6eAOyqNo0W6ZVEABlhRDRkt2YYt8DFtXFuNCxZwmHlYavEclKf2rvj-izTx7p1VxMZyE8zEs2oMLcVZld3zTvLLKZ7h_Pu-an18-_3j4tnr6_vXxYfO00h3FZUUHJoAL0mHDMbdrzbvRmPVgeU-pFaano10PhA1AqTZKULJmYuTE1uwdsyO7ax4vuiaqvZyTm1Q6yqicPA9i2kqViqubyYFUem-oENR2fBCKcMOsEjAyS9VZ6_1Fa07x9wK5yMnlU2oVIC5Z0qHr2ZpQzCuUXaA6xZwT2Ks1wfJUqtzLc6nyVKokRNZSK-vds8EyTmCunH8VVsCnCwDqlx0cJJm1g6DBuAS61EzuvwZ_AcL7trY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746391205</pqid></control><display><type>article</type><title>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</title><source>Elsevier ScienceDirect Journals</source><creator>Choi, Jeonghoon ; Kii, Hiroaki ; Nelson, Justin ; Yamazaki, Yoichi ; Yanagawa, Fumiki ; Kitajima, Atsushi ; Uozumi, Takayuki ; Kiyota, Yasujiro ; Doshi, Dimple ; Rhodes, Kenneth ; Scannevin, Robert ; Sadlish, Heather ; Chung, Chee Yeun</creator><creatorcontrib>Choi, Jeonghoon ; Kii, Hiroaki ; Nelson, Justin ; Yamazaki, Yoichi ; Yanagawa, Fumiki ; Kitajima, Atsushi ; Uozumi, Takayuki ; Kiyota, Yasujiro ; Doshi, Dimple ; Rhodes, Kenneth ; Scannevin, Robert ; Sadlish, Heather ; Chung, Chee Yeun</creatorcontrib><description>The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.</description><identifier>ISSN: 2472-6303</identifier><identifier>EISSN: 2472-6311</identifier><identifier>DOI: 10.1016/j.slast.2022.11.003</identifier><identifier>PMID: 36455858</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Alpha-synuclein ; alpha-Synuclein - genetics ; alpha-Synuclein - metabolism ; Automated analysis ; Cell Tracking ; CL-Quant ; Humans ; Neuronal survival assay ; Neurons - metabolism ; Parkinson's disease ; Single cell tracking ; Synucleinopathies - metabolism</subject><ispartof>SLAS technology, 2023-04, Vol.28 (2), p.63-69</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3</cites><orcidid>0000-0003-1131-4745 ; 0000-0002-5515-650X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S247263032205186X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36455858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Jeonghoon</creatorcontrib><creatorcontrib>Kii, Hiroaki</creatorcontrib><creatorcontrib>Nelson, Justin</creatorcontrib><creatorcontrib>Yamazaki, Yoichi</creatorcontrib><creatorcontrib>Yanagawa, Fumiki</creatorcontrib><creatorcontrib>Kitajima, Atsushi</creatorcontrib><creatorcontrib>Uozumi, Takayuki</creatorcontrib><creatorcontrib>Kiyota, Yasujiro</creatorcontrib><creatorcontrib>Doshi, Dimple</creatorcontrib><creatorcontrib>Rhodes, Kenneth</creatorcontrib><creatorcontrib>Scannevin, Robert</creatorcontrib><creatorcontrib>Sadlish, Heather</creatorcontrib><creatorcontrib>Chung, Chee Yeun</creatorcontrib><title>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</title><title>SLAS technology</title><addtitle>SLAS Technol</addtitle><description>The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.</description><subject>Algorithms</subject><subject>Alpha-synuclein</subject><subject>alpha-Synuclein - genetics</subject><subject>alpha-Synuclein - metabolism</subject><subject>Automated analysis</subject><subject>Cell Tracking</subject><subject>CL-Quant</subject><subject>Humans</subject><subject>Neuronal survival assay</subject><subject>Neurons - metabolism</subject><subject>Parkinson's disease</subject><subject>Single cell tracking</subject><subject>Synucleinopathies - metabolism</subject><issn>2472-6303</issn><issn>2472-6311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UcuO0zAUjRCIGQ3zBUjISzYNfsSJi8SiGvEYaSQ2sLYc-7p1cexgO5X6Dfw0bjt0ycr21Xnc49M0bwluCSb9h32bvcqlpZjSlpAWY_aiuaXdQFc9I-Tl9Y7ZTXOf8x5jTIae9Wx43dywvuNccHHb_NksJU6qgEHKb2NyZTchAwfwcZ4gFFQiUjlDzigv6eAOyqNo0W6ZVEABlhRDRkt2YYt8DFtXFuNCxZwmHlYavEclKf2rvj-izTx7p1VxMZyE8zEs2oMLcVZld3zTvLLKZ7h_Pu-an18-_3j4tnr6_vXxYfO00h3FZUUHJoAL0mHDMbdrzbvRmPVgeU-pFaano10PhA1AqTZKULJmYuTE1uwdsyO7ax4vuiaqvZyTm1Q6yqicPA9i2kqViqubyYFUem-oENR2fBCKcMOsEjAyS9VZ6_1Fa07x9wK5yMnlU2oVIC5Z0qHr2ZpQzCuUXaA6xZwT2Ks1wfJUqtzLc6nyVKokRNZSK-vds8EyTmCunH8VVsCnCwDqlx0cJJm1g6DBuAS61EzuvwZ_AcL7trY</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Choi, Jeonghoon</creator><creator>Kii, Hiroaki</creator><creator>Nelson, Justin</creator><creator>Yamazaki, Yoichi</creator><creator>Yanagawa, Fumiki</creator><creator>Kitajima, Atsushi</creator><creator>Uozumi, Takayuki</creator><creator>Kiyota, Yasujiro</creator><creator>Doshi, Dimple</creator><creator>Rhodes, Kenneth</creator><creator>Scannevin, Robert</creator><creator>Sadlish, Heather</creator><creator>Chung, Chee Yeun</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1131-4745</orcidid><orcidid>https://orcid.org/0000-0002-5515-650X</orcidid></search><sort><creationdate>202304</creationdate><title>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</title><author>Choi, Jeonghoon ; Kii, Hiroaki ; Nelson, Justin ; Yamazaki, Yoichi ; Yanagawa, Fumiki ; Kitajima, Atsushi ; Uozumi, Takayuki ; Kiyota, Yasujiro ; Doshi, Dimple ; Rhodes, Kenneth ; Scannevin, Robert ; Sadlish, Heather ; Chung, Chee Yeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alpha-synuclein</topic><topic>alpha-Synuclein - genetics</topic><topic>alpha-Synuclein - metabolism</topic><topic>Automated analysis</topic><topic>Cell Tracking</topic><topic>CL-Quant</topic><topic>Humans</topic><topic>Neuronal survival assay</topic><topic>Neurons - metabolism</topic><topic>Parkinson's disease</topic><topic>Single cell tracking</topic><topic>Synucleinopathies - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jeonghoon</creatorcontrib><creatorcontrib>Kii, Hiroaki</creatorcontrib><creatorcontrib>Nelson, Justin</creatorcontrib><creatorcontrib>Yamazaki, Yoichi</creatorcontrib><creatorcontrib>Yanagawa, Fumiki</creatorcontrib><creatorcontrib>Kitajima, Atsushi</creatorcontrib><creatorcontrib>Uozumi, Takayuki</creatorcontrib><creatorcontrib>Kiyota, Yasujiro</creatorcontrib><creatorcontrib>Doshi, Dimple</creatorcontrib><creatorcontrib>Rhodes, Kenneth</creatorcontrib><creatorcontrib>Scannevin, Robert</creatorcontrib><creatorcontrib>Sadlish, Heather</creatorcontrib><creatorcontrib>Chung, Chee Yeun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>SLAS technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jeonghoon</au><au>Kii, Hiroaki</au><au>Nelson, Justin</au><au>Yamazaki, Yoichi</au><au>Yanagawa, Fumiki</au><au>Kitajima, Atsushi</au><au>Uozumi, Takayuki</au><au>Kiyota, Yasujiro</au><au>Doshi, Dimple</au><au>Rhodes, Kenneth</au><au>Scannevin, Robert</au><au>Sadlish, Heather</au><au>Chung, Chee Yeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy</atitle><jtitle>SLAS technology</jtitle><addtitle>SLAS Technol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>28</volume><issue>2</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>2472-6303</issn><eissn>2472-6311</eissn><abstract>The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36455858</pmid><doi>10.1016/j.slast.2022.11.003</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1131-4745</orcidid><orcidid>https://orcid.org/0000-0002-5515-650X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-6303
ispartof SLAS technology, 2023-04, Vol.28 (2), p.63-69
issn 2472-6303
2472-6311
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_718216d2882f4578a15d3fa8eb3f2afb
source Elsevier ScienceDirect Journals
subjects Algorithms
Alpha-synuclein
alpha-Synuclein - genetics
alpha-Synuclein - metabolism
Automated analysis
Cell Tracking
CL-Quant
Humans
Neuronal survival assay
Neurons - metabolism
Parkinson's disease
Single cell tracking
Synucleinopathies - metabolism
title Automated algorithm development to assess survival of human neurons using longitudinal single-cell tracking: Application to synucleinopathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20algorithm%20development%20to%20assess%20survival%20of%20human%20neurons%20using%20longitudinal%20single-cell%20tracking:%20Application%20to%20synucleinopathy&rft.jtitle=SLAS%20technology&rft.au=Choi,%20Jeonghoon&rft.date=2023-04&rft.volume=28&rft.issue=2&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=2472-6303&rft.eissn=2472-6311&rft_id=info:doi/10.1016/j.slast.2022.11.003&rft_dat=%3Cproquest_doaj_%3E2746391205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-2738e58140d505f9c54bdd97f5622f8d62bf97137e22cda821938b51f63743fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2746391205&rft_id=info:pmid/36455858&rfr_iscdi=true