Loading…

Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces

Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2018-04, Vol.7
Main Authors: Volkov, Vladimir A, Huis In 't Veld, Pim J, Dogterom, Marileen, Musacchio, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-51336cb3682fea03b562f551070c6285b7e63ac7fb9dde022e772fc4508523933
cites cdi_FETCH-LOGICAL-c541t-51336cb3682fea03b562f551070c6285b7e63ac7fb9dde022e772fc4508523933
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 7
creator Volkov, Vladimir A
Huis In 't Veld, Pim J
Dogterom, Marileen
Musacchio, Andrea
description Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules' residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly.
doi_str_mv 10.7554/elife.36764
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7184899c854c4a9ebb5ab7131eae72b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7184899c854c4a9ebb5ab7131eae72b1</doaj_id><sourcerecordid>2047972388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-51336cb3682fea03b562f551070c6285b7e63ac7fb9dde022e772fc4508523933</originalsourceid><addsrcrecordid>eNpdks9rFDEUxwdRbKk9eZeAF0G25uckuQiy2lpY9aLgLWQyb3azzSZrkin0vzft1tKaS0Lehw_vPb5d95rgMykE_wDBT3DGetnzZ90xxQIvsOK_nz96H3WnpWxxO5IrRfTL7ojqnmol8XG3_zaH6q9tgOhuUJrQ989LhZGPqG4ApblCRlc-Qk1ukzIgXxCUArF6G1BNqGbrrlBptQrRxzXaeZdTnYc5QEE2jmgNEbKtgKaUHZRX3YvJhgKn9_dJ9-v8y8_l18Xqx8Xl8tNq4QQndSEIY70bWK_oBBazQfR0EoJgiV1PlRgk9Mw6OQ16HAFTClLSyXGBlaBMM3bSXR68Y7Jbs89-Z_ONSdabu4-U18bm6l0AI4niSmunBHfcahgGYQdJGAELkg6kuT4eXPt52MHo2vjZhifSp5XoN2adro3QHDOhm-DdvSCnPzOUana-OAjBRkhzMRRTxtto9BZ9-x-6TXOObVWN4lJLypRq1PsD1ZZdSobpoRmCzW0wDKxaMMxdMBr95nH_D-y_GLC_nxW05w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047972388</pqid></control><display><type>article</type><title>Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Volkov, Vladimir A ; Huis In 't Veld, Pim J ; Dogterom, Marileen ; Musacchio, Andrea</creator><creatorcontrib>Volkov, Vladimir A ; Huis In 't Veld, Pim J ; Dogterom, Marileen ; Musacchio, Andrea</creatorcontrib><description>Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules' residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.36764</identifier><identifier>PMID: 29629870</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Binding sites ; Biochemistry and Chemical Biology ; Cell division ; CENP-T ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosomes ; Computer simulation ; Cytoskeletal Proteins ; Depolymerization ; Evolutionary conservation ; Experiments ; Hec1 ; HeLa Cells ; Humans ; kinetochore ; Kinetochores ; Kinetochores - metabolism ; Ligands ; Microscopy ; microtubule ; Microtubule-Associated Proteins - metabolism ; Microtubules ; Microtubules - physiology ; Mitosis ; multivalency ; Ndc80 ; Nuclear Proteins - metabolism ; Polymerization ; Protein Binding ; Protein Multimerization ; Spindle Apparatus - metabolism ; Structural Biology and Molecular Biophysics</subject><ispartof>eLife, 2018-04, Vol.7</ispartof><rights>2018, Volkov et al.</rights><rights>2018, Volkov et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018, Volkov et al 2018 Volkov et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-51336cb3682fea03b562f551070c6285b7e63ac7fb9dde022e772fc4508523933</citedby><cites>FETCH-LOGICAL-c541t-51336cb3682fea03b562f551070c6285b7e63ac7fb9dde022e772fc4508523933</cites><orcidid>0000-0003-2362-8784 ; 0000-0002-5407-3366 ; 0000-0003-0234-6390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2047972388/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2047972388?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29629870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkov, Vladimir A</creatorcontrib><creatorcontrib>Huis In 't Veld, Pim J</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><creatorcontrib>Musacchio, Andrea</creatorcontrib><title>Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces</title><title>eLife</title><addtitle>Elife</addtitle><description>Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules' residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly.</description><subject>Binding sites</subject><subject>Biochemistry and Chemical Biology</subject><subject>Cell division</subject><subject>CENP-T</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosomes</subject><subject>Computer simulation</subject><subject>Cytoskeletal Proteins</subject><subject>Depolymerization</subject><subject>Evolutionary conservation</subject><subject>Experiments</subject><subject>Hec1</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>kinetochore</subject><subject>Kinetochores</subject><subject>Kinetochores - metabolism</subject><subject>Ligands</subject><subject>Microscopy</subject><subject>microtubule</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules</subject><subject>Microtubules - physiology</subject><subject>Mitosis</subject><subject>multivalency</subject><subject>Ndc80</subject><subject>Nuclear Proteins - metabolism</subject><subject>Polymerization</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Spindle Apparatus - metabolism</subject><subject>Structural Biology and Molecular Biophysics</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rFDEUxwdRbKk9eZeAF0G25uckuQiy2lpY9aLgLWQyb3azzSZrkin0vzft1tKaS0Lehw_vPb5d95rgMykE_wDBT3DGetnzZ90xxQIvsOK_nz96H3WnpWxxO5IrRfTL7ojqnmol8XG3_zaH6q9tgOhuUJrQ989LhZGPqG4ApblCRlc-Qk1ukzIgXxCUArF6G1BNqGbrrlBptQrRxzXaeZdTnYc5QEE2jmgNEbKtgKaUHZRX3YvJhgKn9_dJ9-v8y8_l18Xqx8Xl8tNq4QQndSEIY70bWK_oBBazQfR0EoJgiV1PlRgk9Mw6OQ16HAFTClLSyXGBlaBMM3bSXR68Y7Jbs89-Z_ONSdabu4-U18bm6l0AI4niSmunBHfcahgGYQdJGAELkg6kuT4eXPt52MHo2vjZhifSp5XoN2adro3QHDOhm-DdvSCnPzOUana-OAjBRkhzMRRTxtto9BZ9-x-6TXOObVWN4lJLypRq1PsD1ZZdSobpoRmCzW0wDKxaMMxdMBr95nH_D-y_GLC_nxW05w</recordid><startdate>20180409</startdate><enddate>20180409</enddate><creator>Volkov, Vladimir A</creator><creator>Huis In 't Veld, Pim J</creator><creator>Dogterom, Marileen</creator><creator>Musacchio, Andrea</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2362-8784</orcidid><orcidid>https://orcid.org/0000-0002-5407-3366</orcidid><orcidid>https://orcid.org/0000-0003-0234-6390</orcidid></search><sort><creationdate>20180409</creationdate><title>Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces</title><author>Volkov, Vladimir A ; Huis In 't Veld, Pim J ; Dogterom, Marileen ; Musacchio, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-51336cb3682fea03b562f551070c6285b7e63ac7fb9dde022e772fc4508523933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding sites</topic><topic>Biochemistry and Chemical Biology</topic><topic>Cell division</topic><topic>CENP-T</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosomes</topic><topic>Computer simulation</topic><topic>Cytoskeletal Proteins</topic><topic>Depolymerization</topic><topic>Evolutionary conservation</topic><topic>Experiments</topic><topic>Hec1</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>kinetochore</topic><topic>Kinetochores</topic><topic>Kinetochores - metabolism</topic><topic>Ligands</topic><topic>Microscopy</topic><topic>microtubule</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules</topic><topic>Microtubules - physiology</topic><topic>Mitosis</topic><topic>multivalency</topic><topic>Ndc80</topic><topic>Nuclear Proteins - metabolism</topic><topic>Polymerization</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Spindle Apparatus - metabolism</topic><topic>Structural Biology and Molecular Biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, Vladimir A</creatorcontrib><creatorcontrib>Huis In 't Veld, Pim J</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><creatorcontrib>Musacchio, Andrea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, Vladimir A</au><au>Huis In 't Veld, Pim J</au><au>Dogterom, Marileen</au><au>Musacchio, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2018-04-09</date><risdate>2018</risdate><volume>7</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules' residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>29629870</pmid><doi>10.7554/elife.36764</doi><orcidid>https://orcid.org/0000-0003-2362-8784</orcidid><orcidid>https://orcid.org/0000-0002-5407-3366</orcidid><orcidid>https://orcid.org/0000-0003-0234-6390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2018-04, Vol.7
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7184899c854c4a9ebb5ab7131eae72b1
source Publicly Available Content Database; PubMed Central
subjects Binding sites
Biochemistry and Chemical Biology
Cell division
CENP-T
Chromosomal Proteins, Non-Histone - metabolism
Chromosomes
Computer simulation
Cytoskeletal Proteins
Depolymerization
Evolutionary conservation
Experiments
Hec1
HeLa Cells
Humans
kinetochore
Kinetochores
Kinetochores - metabolism
Ligands
Microscopy
microtubule
Microtubule-Associated Proteins - metabolism
Microtubules
Microtubules - physiology
Mitosis
multivalency
Ndc80
Nuclear Proteins - metabolism
Polymerization
Protein Binding
Protein Multimerization
Spindle Apparatus - metabolism
Structural Biology and Molecular Biophysics
title Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivalency%20of%20NDC80%20in%20the%20outer%20kinetochore%20is%20essential%20to%20track%20shortening%20microtubules%20and%20generate%20forces&rft.jtitle=eLife&rft.au=Volkov,%20Vladimir%20A&rft.date=2018-04-09&rft.volume=7&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.36764&rft_dat=%3Cproquest_doaj_%3E2047972388%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-51336cb3682fea03b562f551070c6285b7e63ac7fb9dde022e772fc4508523933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047972388&rft_id=info:pmid/29629870&rfr_iscdi=true