Loading…

Transcriptome Analysis Reveals That Abeliophyllum distichum Nakai Extract Inhibits RANKL-Mediated Osteoclastogenensis Mainly through Suppressing Nfatc1 Expression

Abeliophyllum distichum Nakai is known as a monotypic genus endemic to South Korea. Currently, several pharmacological studies have revealed that A. distichum extract exhibits diverse biological functions, including anti-cancer, anti-diabetic, anti-hypertensive, and anti-inflammatory activities. In...

Full description

Saved in:
Bibliographic Details
Published in:Biology (Basel, Switzerland) Switzerland), 2020-08, Vol.9 (8), p.212
Main Authors: Lee, Kyubin, Jang, You-Jee, Lee, Hyerim, Kim, Eunbin, Kim, Yeojin, Yoo, Tong-Kewn, Hyun, Tae Kyung, Park, Jae-Il, Yi, Sun-Ju, Kim, Kyunghwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abeliophyllum distichum Nakai is known as a monotypic genus endemic to South Korea. Currently, several pharmacological studies have revealed that A. distichum extract exhibits diverse biological functions, including anti-cancer, anti-diabetic, anti-hypertensive, and anti-inflammatory activities. In this study, we present the anti-osteoporotic activity of A. distichum extract by inhibiting osteoclast formation. First, we show that the methanolic extract of the leaves of A. distichum, but not extracts of the branches or fruits, significantly inhibits receptor activator of the NF-κB ligand (RANKL)-induced osteoclast differentiation. Second, our transcriptome analysis revealed that the leaf extract (LE) blocks sets of RANKL-mediated osteoclast-related genes. Third, the LE attenuates the phosphorylation of extracellular signal-related kinase. Finally, treatment with the LE effectively prevents postmenopausal bone loss in ovariectomized mice and glucocorticoid-induced osteoporosis in zebrafish. Our findings show that the extract of A. distichum efficiently suppressed osteoclastogenesis by regulating osteoclast-related genes, thus offering a novel therapeutic strategy for osteoporosis.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology9080212