Loading…
Measure Transformer Semantics for Bayesian Machine Learning
The Bayesian approach to machine learning amounts to computing posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayes...
Saved in:
Published in: | Logical methods in computer science 2013-09, Vol.9, Issue 3 (3), p.11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-c03f70ec31365361c0033f1f705b9ff024cf67b50591a22bfaa90ce9f426d5433 |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | 11 |
container_title | Logical methods in computer science |
container_volume | 9, Issue 3 |
creator | Borgström, Johannes Gordon, Andrew D Greenberg, Michael Margetson, James Van Gael, Jurgen |
description | The Bayesian approach to machine learning amounts to computing posterior
distributions of random variables from a probabilistic model of how the
variables are related (that is, a prior distribution) and a set of observations
of variables. There is a trend in machine learning towards expressing Bayesian
models as probabilistic programs. As a foundation for this kind of programming,
we propose a core functional calculus with primitives for sampling prior
distributions and observing variables. We define measure-transformer
combinators inspired by theorems in measure theory, and use these to give a
rigorous semantics to our core calculus. The original features of our semantics
include its support for discrete, continuous, and hybrid measures, and, in
particular, for observations of zero-probability events. We compile our core
language to a small imperative language that is processed by an existing
inference engine for factor graphs, which are data structures that enable many
efficient inference algorithms. This allows efficient approximate inference of
posterior marginal distributions, treating thousands of observations per second
for large instances of realistic models. |
doi_str_mv | 10.2168/LMCS-9(3:11)2013 |
format | article |
fullrecord | <record><control><sourceid>swepub_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_718952f3bd0343d9899c8284a7d05847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_718952f3bd0343d9899c8284a7d05847</doaj_id><sourcerecordid>oai_DiVA_org_uu_201425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-c03f70ec31365361c0033f1f705b9ff024cf67b50591a22bfaa90ce9f426d5433</originalsourceid><addsrcrecordid>eNpVkM1PwzAMxSsEEhPszrFHkCgkcdImcBrja1InDhtcIzdNRqetnZJVaP897YYQ-GLr6fln60XRBSU3jKbyNp-OZ4m6hDtKrxihcBQNqExJIlTGj__Mp9EwhCXpCoBKlg6i-6nF0Hobzz3WwTV-bX08s2ust5UJcSfED7izocI6nqL5rGob5xZ9XdWL8-jE4SrY4U8_i96fn-bj1yR_e5mMR3liQMptYgi4jFgDFFIBKTX9dUc7TRTKOcK4cWlWCCIURcYKh6iIscpxlpaCA5xFkwO3bHCpN75ao9_pBiu9Fxq_0Oi7d1dWZ1QqwRwUJQEOpZJKGckkx6wkQvKsY10fWOHLbtriH-2x-hjtaW2ruxQ5E52dHOzGNyF4634XKNF99LqPXisNmtJ-CeAbCm904Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measure Transformer Semantics for Bayesian Machine Learning</title><source>EZB Free E-Journals</source><creator>Borgström, Johannes ; Gordon, Andrew D ; Greenberg, Michael ; Margetson, James ; Van Gael, Jurgen</creator><creatorcontrib>Borgström, Johannes ; Gordon, Andrew D ; Greenberg, Michael ; Margetson, James ; Van Gael, Jurgen</creatorcontrib><description>The Bayesian approach to machine learning amounts to computing posterior
distributions of random variables from a probabilistic model of how the
variables are related (that is, a prior distribution) and a set of observations
of variables. There is a trend in machine learning towards expressing Bayesian
models as probabilistic programs. As a foundation for this kind of programming,
we propose a core functional calculus with primitives for sampling prior
distributions and observing variables. We define measure-transformer
combinators inspired by theorems in measure theory, and use these to give a
rigorous semantics to our core calculus. The original features of our semantics
include its support for discrete, continuous, and hybrid measures, and, in
particular, for observations of zero-probability events. We compile our core
language to a small imperative language that is processed by an existing
inference engine for factor graphs, which are data structures that enable many
efficient inference algorithms. This allows efficient approximate inference of
posterior marginal distributions, treating thousands of observations per second
for large instances of realistic models.</description><identifier>ISSN: 1860-5974</identifier><identifier>EISSN: 1860-5974</identifier><identifier>DOI: 10.2168/LMCS-9(3:11)2013</identifier><language>eng</language><publisher>Logical Methods in Computer Science e.V</publisher><subject>Bayesian modelling ; Computer Science ; computer science - artificial intelligence ; computer science - logic in computer science ; computer science - programming languages ; Datavetenskap ; Machine learning ; Probabilistic programming ; Programming languages</subject><ispartof>Logical methods in computer science, 2013-09, Vol.9, Issue 3 (3), p.11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-c03f70ec31365361c0033f1f705b9ff024cf67b50591a22bfaa90ce9f426d5433</citedby><orcidid>0000-0003-0014-7670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-201425$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgström, Johannes</creatorcontrib><creatorcontrib>Gordon, Andrew D</creatorcontrib><creatorcontrib>Greenberg, Michael</creatorcontrib><creatorcontrib>Margetson, James</creatorcontrib><creatorcontrib>Van Gael, Jurgen</creatorcontrib><title>Measure Transformer Semantics for Bayesian Machine Learning</title><title>Logical methods in computer science</title><description>The Bayesian approach to machine learning amounts to computing posterior
distributions of random variables from a probabilistic model of how the
variables are related (that is, a prior distribution) and a set of observations
of variables. There is a trend in machine learning towards expressing Bayesian
models as probabilistic programs. As a foundation for this kind of programming,
we propose a core functional calculus with primitives for sampling prior
distributions and observing variables. We define measure-transformer
combinators inspired by theorems in measure theory, and use these to give a
rigorous semantics to our core calculus. The original features of our semantics
include its support for discrete, continuous, and hybrid measures, and, in
particular, for observations of zero-probability events. We compile our core
language to a small imperative language that is processed by an existing
inference engine for factor graphs, which are data structures that enable many
efficient inference algorithms. This allows efficient approximate inference of
posterior marginal distributions, treating thousands of observations per second
for large instances of realistic models.</description><subject>Bayesian modelling</subject><subject>Computer Science</subject><subject>computer science - artificial intelligence</subject><subject>computer science - logic in computer science</subject><subject>computer science - programming languages</subject><subject>Datavetenskap</subject><subject>Machine learning</subject><subject>Probabilistic programming</subject><subject>Programming languages</subject><issn>1860-5974</issn><issn>1860-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkM1PwzAMxSsEEhPszrFHkCgkcdImcBrja1InDhtcIzdNRqetnZJVaP897YYQ-GLr6fln60XRBSU3jKbyNp-OZ4m6hDtKrxihcBQNqExJIlTGj__Mp9EwhCXpCoBKlg6i-6nF0Hobzz3WwTV-bX08s2ust5UJcSfED7izocI6nqL5rGob5xZ9XdWL8-jE4SrY4U8_i96fn-bj1yR_e5mMR3liQMptYgi4jFgDFFIBKTX9dUc7TRTKOcK4cWlWCCIURcYKh6iIscpxlpaCA5xFkwO3bHCpN75ao9_pBiu9Fxq_0Oi7d1dWZ1QqwRwUJQEOpZJKGckkx6wkQvKsY10fWOHLbtriH-2x-hjtaW2ruxQ5E52dHOzGNyF4634XKNF99LqPXisNmtJ-CeAbCm904Q</recordid><startdate>20130909</startdate><enddate>20130909</enddate><creator>Borgström, Johannes</creator><creator>Gordon, Andrew D</creator><creator>Greenberg, Michael</creator><creator>Margetson, James</creator><creator>Van Gael, Jurgen</creator><general>Logical Methods in Computer Science e.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0014-7670</orcidid></search><sort><creationdate>20130909</creationdate><title>Measure Transformer Semantics for Bayesian Machine Learning</title><author>Borgström, Johannes ; Gordon, Andrew D ; Greenberg, Michael ; Margetson, James ; Van Gael, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-c03f70ec31365361c0033f1f705b9ff024cf67b50591a22bfaa90ce9f426d5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian modelling</topic><topic>Computer Science</topic><topic>computer science - artificial intelligence</topic><topic>computer science - logic in computer science</topic><topic>computer science - programming languages</topic><topic>Datavetenskap</topic><topic>Machine learning</topic><topic>Probabilistic programming</topic><topic>Programming languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgström, Johannes</creatorcontrib><creatorcontrib>Gordon, Andrew D</creatorcontrib><creatorcontrib>Greenberg, Michael</creatorcontrib><creatorcontrib>Margetson, James</creatorcontrib><creatorcontrib>Van Gael, Jurgen</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Logical methods in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgström, Johannes</au><au>Gordon, Andrew D</au><au>Greenberg, Michael</au><au>Margetson, James</au><au>Van Gael, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measure Transformer Semantics for Bayesian Machine Learning</atitle><jtitle>Logical methods in computer science</jtitle><date>2013-09-09</date><risdate>2013</risdate><volume>9, Issue 3</volume><issue>3</issue><spage>11</spage><pages>11-</pages><issn>1860-5974</issn><eissn>1860-5974</eissn><abstract>The Bayesian approach to machine learning amounts to computing posterior
distributions of random variables from a probabilistic model of how the
variables are related (that is, a prior distribution) and a set of observations
of variables. There is a trend in machine learning towards expressing Bayesian
models as probabilistic programs. As a foundation for this kind of programming,
we propose a core functional calculus with primitives for sampling prior
distributions and observing variables. We define measure-transformer
combinators inspired by theorems in measure theory, and use these to give a
rigorous semantics to our core calculus. The original features of our semantics
include its support for discrete, continuous, and hybrid measures, and, in
particular, for observations of zero-probability events. We compile our core
language to a small imperative language that is processed by an existing
inference engine for factor graphs, which are data structures that enable many
efficient inference algorithms. This allows efficient approximate inference of
posterior marginal distributions, treating thousands of observations per second
for large instances of realistic models.</abstract><pub>Logical Methods in Computer Science e.V</pub><doi>10.2168/LMCS-9(3:11)2013</doi><orcidid>https://orcid.org/0000-0003-0014-7670</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-5974 |
ispartof | Logical methods in computer science, 2013-09, Vol.9, Issue 3 (3), p.11 |
issn | 1860-5974 1860-5974 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_718952f3bd0343d9899c8284a7d05847 |
source | EZB Free E-Journals |
subjects | Bayesian modelling Computer Science computer science - artificial intelligence computer science - logic in computer science computer science - programming languages Datavetenskap Machine learning Probabilistic programming Programming languages |
title | Measure Transformer Semantics for Bayesian Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measure%20Transformer%20Semantics%20for%20Bayesian%20Machine%20Learning&rft.jtitle=Logical%20methods%20in%20computer%20science&rft.au=Borgstr%C3%B6m,%20Johannes&rft.date=2013-09-09&rft.volume=9,%20Issue%203&rft.issue=3&rft.spage=11&rft.pages=11-&rft.issn=1860-5974&rft.eissn=1860-5974&rft_id=info:doi/10.2168/LMCS-9(3:11)2013&rft_dat=%3Cswepub_doaj_%3Eoai_DiVA_org_uu_201425%3C/swepub_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-c03f70ec31365361c0033f1f705b9ff024cf67b50591a22bfaa90ce9f426d5433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |