Loading…

Chinese Bayberry Detection in an Orchard Environment Based on an Improved YOLOv7-Tiny Model

The precise detection of Chinese bayberry locations using object detection technology is a crucial step to achieve unmanned harvesting of these berries. Because of the small size and easy occlusion of bayberry fruit, the existing detection algorithms have low recognition accuracy for such objects. I...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2024-10, Vol.14 (10), p.1725
Main Authors: Chen, Zhenlei, Qian, Mengbo, Zhang, Xiaobin, Zhu, Jianxi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The precise detection of Chinese bayberry locations using object detection technology is a crucial step to achieve unmanned harvesting of these berries. Because of the small size and easy occlusion of bayberry fruit, the existing detection algorithms have low recognition accuracy for such objects. In order to realize the fast and accurate recognition of bayberry in fruit trees, and then guide the robotic arm to carry out accurate fruit harvesting, this paper proposes a detection algorithm based on an improved YOLOv7-tiny model. The model introduces partial convolution (PConv), a SimAM attention mechanism and SIoU into YOLOv7-tiny, which enables the model to improve the feature extraction capability of the target without adding extra parameters. Experimental results on a self-built Chinese bayberry dataset demonstrate that the improved algorithm achieved a recall rate of 97.6% and a model size of only 9.0 MB. Meanwhile, the precision of the improved model is 88.1%, which is 26%, 2.7%, 4.7%, 6.5%, and 4.7% higher than that of Faster R-CNN, YOLOv3-tiny, YOLOv5-m, YOLOv6-n, and YOLOv7-tiny, respectively. In addition, the proposed model was tested under natural conditions with the five models mentioned above, and the results showed that the proposed model can more effectively reduce the rates of misdetections and omissions in bayberry recognition. Finally, the improved algorithm was deployed on a mobile harvesting robot for field harvesting experiments, and the practicability of the algorithm was further verified.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture14101725