Loading…
Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets
Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission sc...
Saved in:
Published in: | Applied sciences 2022-04, Vol.12 (7), p.3574 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983 |
container_end_page | |
container_issue | 7 |
container_start_page | 3574 |
container_title | Applied sciences |
container_volume | 12 |
creator | Sun, Li Zhou, Quan Mao, Jiaheng Ouyang, Xingyu Yuan, Zhigang Song, Xiaoxiang Gong, Wenbang Mei, Shunqi Xu, Wei |
description | Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model. |
doi_str_mv | 10.3390/app12073574 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_71ea9b26755b458fa7f033f04009b783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_71ea9b26755b458fa7f033f04009b783</doaj_id><sourcerecordid>2648973990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</originalsourceid><addsrcrecordid>eNpNUctKA0EQXETBEHPyBwa8KBKd9-NmiIkGAhFNzsPsPOKGmFlnN-D-vaMRSV-66Sqqq7uL4hLBO0IUvDd1jTAUhAl6UvRyxYeEInF6VJ8Xg6bZwBwKEYlgr1i9tXvXgbgDL--xjda0Ztu1lQWPfp2MM22VoRjAyFYOvHoHBAFlB6aeLOjDslpgMPmqY5OBawjRDZga69vmojgLZtv4wV_uF6vpZDl-Hs4XT7PxaD60WNF26ErFhRNcuUAVshxjWFKpGJXMMSawCtYZb0vCmMw0bqkNGDLuJKEZlaRfzA66LpqNrlP1YVKno6n0byOmtTYpb7P1WiBvVIm5YKykTAYjAiQkQJpvUQpJstbVQatO8XPvm1Zv4j7tsn2NeXYliFIws24PLJti0yQf_qciqH_eoI_eQL4BeVF1Jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648973990</pqid></control><display><type>article</type><title>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Sun, Li ; Zhou, Quan ; Mao, Jiaheng ; Ouyang, Xingyu ; Yuan, Zhigang ; Song, Xiaoxiang ; Gong, Wenbang ; Mei, Shunqi ; Xu, Wei</creator><creatorcontrib>Sun, Li ; Zhou, Quan ; Mao, Jiaheng ; Ouyang, Xingyu ; Yuan, Zhigang ; Song, Xiaoxiang ; Gong, Wenbang ; Mei, Shunqi ; Xu, Wei</creatorcontrib><description>Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12073574</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acid Red 73 ; Acids ; Anatase ; Band theory ; Composite materials ; Degradation ; Dyes ; Energy ; Energy bands ; Environmental protection ; Ethanol ; Experiments ; Exposure ; Fe3O4@TiO2 ; Field emission microscopy ; Iron oxides ; Kinetic equations ; Nanocomposites ; Nanoparticles ; PCB ; Photocatalysis ; photocatalytic degradation ; Photodegradation ; Pollutants ; Polychlorinated biphenyls ; Polyethylene glycol ; Radiation ; Raman spectroscopy ; Scanning electron microscopy ; Solar energy ; Spectroscopy ; Spectrum analysis ; Titanium dioxide ; Ultraviolet reflection ; Water pollution ; X-ray diffraction</subject><ispartof>Applied sciences, 2022-04, Vol.12 (7), p.3574</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</citedby><cites>FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</cites><orcidid>0000-0002-5907-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2648973990/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2648973990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Mao, Jiaheng</creatorcontrib><creatorcontrib>Ouyang, Xingyu</creatorcontrib><creatorcontrib>Yuan, Zhigang</creatorcontrib><creatorcontrib>Song, Xiaoxiang</creatorcontrib><creatorcontrib>Gong, Wenbang</creatorcontrib><creatorcontrib>Mei, Shunqi</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</title><title>Applied sciences</title><description>Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model.</description><subject>Acid Red 73</subject><subject>Acids</subject><subject>Anatase</subject><subject>Band theory</subject><subject>Composite materials</subject><subject>Degradation</subject><subject>Dyes</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Environmental protection</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>Exposure</subject><subject>Fe3O4@TiO2</subject><subject>Field emission microscopy</subject><subject>Iron oxides</subject><subject>Kinetic equations</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>PCB</subject><subject>Photocatalysis</subject><subject>photocatalytic degradation</subject><subject>Photodegradation</subject><subject>Pollutants</subject><subject>Polychlorinated biphenyls</subject><subject>Polyethylene glycol</subject><subject>Radiation</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Solar energy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Ultraviolet reflection</subject><subject>Water pollution</subject><subject>X-ray diffraction</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXETBEHPyBwa8KBKd9-NmiIkGAhFNzsPsPOKGmFlnN-D-vaMRSV-66Sqqq7uL4hLBO0IUvDd1jTAUhAl6UvRyxYeEInF6VJ8Xg6bZwBwKEYlgr1i9tXvXgbgDL--xjda0Ztu1lQWPfp2MM22VoRjAyFYOvHoHBAFlB6aeLOjDslpgMPmqY5OBawjRDZga69vmojgLZtv4wV_uF6vpZDl-Hs4XT7PxaD60WNF26ErFhRNcuUAVshxjWFKpGJXMMSawCtYZb0vCmMw0bqkNGDLuJKEZlaRfzA66LpqNrlP1YVKno6n0byOmtTYpb7P1WiBvVIm5YKykTAYjAiQkQJpvUQpJstbVQatO8XPvm1Zv4j7tsn2NeXYliFIws24PLJti0yQf_qciqH_eoI_eQL4BeVF1Jw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Sun, Li</creator><creator>Zhou, Quan</creator><creator>Mao, Jiaheng</creator><creator>Ouyang, Xingyu</creator><creator>Yuan, Zhigang</creator><creator>Song, Xiaoxiang</creator><creator>Gong, Wenbang</creator><creator>Mei, Shunqi</creator><creator>Xu, Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5907-3525</orcidid></search><sort><creationdate>20220401</creationdate><title>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</title><author>Sun, Li ; Zhou, Quan ; Mao, Jiaheng ; Ouyang, Xingyu ; Yuan, Zhigang ; Song, Xiaoxiang ; Gong, Wenbang ; Mei, Shunqi ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid Red 73</topic><topic>Acids</topic><topic>Anatase</topic><topic>Band theory</topic><topic>Composite materials</topic><topic>Degradation</topic><topic>Dyes</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Environmental protection</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>Exposure</topic><topic>Fe3O4@TiO2</topic><topic>Field emission microscopy</topic><topic>Iron oxides</topic><topic>Kinetic equations</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>PCB</topic><topic>Photocatalysis</topic><topic>photocatalytic degradation</topic><topic>Photodegradation</topic><topic>Pollutants</topic><topic>Polychlorinated biphenyls</topic><topic>Polyethylene glycol</topic><topic>Radiation</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Solar energy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Ultraviolet reflection</topic><topic>Water pollution</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Mao, Jiaheng</creatorcontrib><creatorcontrib>Ouyang, Xingyu</creatorcontrib><creatorcontrib>Yuan, Zhigang</creatorcontrib><creatorcontrib>Song, Xiaoxiang</creatorcontrib><creatorcontrib>Gong, Wenbang</creatorcontrib><creatorcontrib>Mei, Shunqi</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Li</au><au>Zhou, Quan</au><au>Mao, Jiaheng</au><au>Ouyang, Xingyu</au><au>Yuan, Zhigang</au><au>Song, Xiaoxiang</au><au>Gong, Wenbang</au><au>Mei, Shunqi</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</atitle><jtitle>Applied sciences</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>3574</spage><pages>3574-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12073574</doi><orcidid>https://orcid.org/0000-0002-5907-3525</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-04, Vol.12 (7), p.3574 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_71ea9b26755b458fa7f033f04009b783 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Acid Red 73 Acids Anatase Band theory Composite materials Degradation Dyes Energy Energy bands Environmental protection Ethanol Experiments Exposure Fe3O4@TiO2 Field emission microscopy Iron oxides Kinetic equations Nanocomposites Nanoparticles PCB Photocatalysis photocatalytic degradation Photodegradation Pollutants Polychlorinated biphenyls Polyethylene glycol Radiation Raman spectroscopy Scanning electron microscopy Solar energy Spectroscopy Spectrum analysis Titanium dioxide Ultraviolet reflection Water pollution X-ray diffraction |
title | Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Photocatalytic%20Degradation%20of%20Acid%20Red%2073%20by%20Fe3O4@TiO2%20Exposed%20(001)%20Facets&rft.jtitle=Applied%20sciences&rft.au=Sun,%20Li&rft.date=2022-04-01&rft.volume=12&rft.issue=7&rft.spage=3574&rft.pages=3574-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12073574&rft_dat=%3Cproquest_doaj_%3E2648973990%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648973990&rft_id=info:pmid/&rfr_iscdi=true |