Loading…

Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets

Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission sc...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-04, Vol.12 (7), p.3574
Main Authors: Sun, Li, Zhou, Quan, Mao, Jiaheng, Ouyang, Xingyu, Yuan, Zhigang, Song, Xiaoxiang, Gong, Wenbang, Mei, Shunqi, Xu, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983
cites cdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983
container_end_page
container_issue 7
container_start_page 3574
container_title Applied sciences
container_volume 12
creator Sun, Li
Zhou, Quan
Mao, Jiaheng
Ouyang, Xingyu
Yuan, Zhigang
Song, Xiaoxiang
Gong, Wenbang
Mei, Shunqi
Xu, Wei
description Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model.
doi_str_mv 10.3390/app12073574
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_71ea9b26755b458fa7f033f04009b783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_71ea9b26755b458fa7f033f04009b783</doaj_id><sourcerecordid>2648973990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</originalsourceid><addsrcrecordid>eNpNUctKA0EQXETBEHPyBwa8KBKd9-NmiIkGAhFNzsPsPOKGmFlnN-D-vaMRSV-66Sqqq7uL4hLBO0IUvDd1jTAUhAl6UvRyxYeEInF6VJ8Xg6bZwBwKEYlgr1i9tXvXgbgDL--xjda0Ztu1lQWPfp2MM22VoRjAyFYOvHoHBAFlB6aeLOjDslpgMPmqY5OBawjRDZga69vmojgLZtv4wV_uF6vpZDl-Hs4XT7PxaD60WNF26ErFhRNcuUAVshxjWFKpGJXMMSawCtYZb0vCmMw0bqkNGDLuJKEZlaRfzA66LpqNrlP1YVKno6n0byOmtTYpb7P1WiBvVIm5YKykTAYjAiQkQJpvUQpJstbVQatO8XPvm1Zv4j7tsn2NeXYliFIws24PLJti0yQf_qciqH_eoI_eQL4BeVF1Jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648973990</pqid></control><display><type>article</type><title>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Sun, Li ; Zhou, Quan ; Mao, Jiaheng ; Ouyang, Xingyu ; Yuan, Zhigang ; Song, Xiaoxiang ; Gong, Wenbang ; Mei, Shunqi ; Xu, Wei</creator><creatorcontrib>Sun, Li ; Zhou, Quan ; Mao, Jiaheng ; Ouyang, Xingyu ; Yuan, Zhigang ; Song, Xiaoxiang ; Gong, Wenbang ; Mei, Shunqi ; Xu, Wei</creatorcontrib><description>Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12073574</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acid Red 73 ; Acids ; Anatase ; Band theory ; Composite materials ; Degradation ; Dyes ; Energy ; Energy bands ; Environmental protection ; Ethanol ; Experiments ; Exposure ; Fe3O4@TiO2 ; Field emission microscopy ; Iron oxides ; Kinetic equations ; Nanocomposites ; Nanoparticles ; PCB ; Photocatalysis ; photocatalytic degradation ; Photodegradation ; Pollutants ; Polychlorinated biphenyls ; Polyethylene glycol ; Radiation ; Raman spectroscopy ; Scanning electron microscopy ; Solar energy ; Spectroscopy ; Spectrum analysis ; Titanium dioxide ; Ultraviolet reflection ; Water pollution ; X-ray diffraction</subject><ispartof>Applied sciences, 2022-04, Vol.12 (7), p.3574</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</citedby><cites>FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</cites><orcidid>0000-0002-5907-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2648973990/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2648973990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Mao, Jiaheng</creatorcontrib><creatorcontrib>Ouyang, Xingyu</creatorcontrib><creatorcontrib>Yuan, Zhigang</creatorcontrib><creatorcontrib>Song, Xiaoxiang</creatorcontrib><creatorcontrib>Gong, Wenbang</creatorcontrib><creatorcontrib>Mei, Shunqi</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</title><title>Applied sciences</title><description>Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model.</description><subject>Acid Red 73</subject><subject>Acids</subject><subject>Anatase</subject><subject>Band theory</subject><subject>Composite materials</subject><subject>Degradation</subject><subject>Dyes</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Environmental protection</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>Exposure</subject><subject>Fe3O4@TiO2</subject><subject>Field emission microscopy</subject><subject>Iron oxides</subject><subject>Kinetic equations</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>PCB</subject><subject>Photocatalysis</subject><subject>photocatalytic degradation</subject><subject>Photodegradation</subject><subject>Pollutants</subject><subject>Polychlorinated biphenyls</subject><subject>Polyethylene glycol</subject><subject>Radiation</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Solar energy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Ultraviolet reflection</subject><subject>Water pollution</subject><subject>X-ray diffraction</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXETBEHPyBwa8KBKd9-NmiIkGAhFNzsPsPOKGmFlnN-D-vaMRSV-66Sqqq7uL4hLBO0IUvDd1jTAUhAl6UvRyxYeEInF6VJ8Xg6bZwBwKEYlgr1i9tXvXgbgDL--xjda0Ztu1lQWPfp2MM22VoRjAyFYOvHoHBAFlB6aeLOjDslpgMPmqY5OBawjRDZga69vmojgLZtv4wV_uF6vpZDl-Hs4XT7PxaD60WNF26ErFhRNcuUAVshxjWFKpGJXMMSawCtYZb0vCmMw0bqkNGDLuJKEZlaRfzA66LpqNrlP1YVKno6n0byOmtTYpb7P1WiBvVIm5YKykTAYjAiQkQJpvUQpJstbVQatO8XPvm1Zv4j7tsn2NeXYliFIws24PLJti0yQf_qciqH_eoI_eQL4BeVF1Jw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Sun, Li</creator><creator>Zhou, Quan</creator><creator>Mao, Jiaheng</creator><creator>Ouyang, Xingyu</creator><creator>Yuan, Zhigang</creator><creator>Song, Xiaoxiang</creator><creator>Gong, Wenbang</creator><creator>Mei, Shunqi</creator><creator>Xu, Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5907-3525</orcidid></search><sort><creationdate>20220401</creationdate><title>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</title><author>Sun, Li ; Zhou, Quan ; Mao, Jiaheng ; Ouyang, Xingyu ; Yuan, Zhigang ; Song, Xiaoxiang ; Gong, Wenbang ; Mei, Shunqi ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid Red 73</topic><topic>Acids</topic><topic>Anatase</topic><topic>Band theory</topic><topic>Composite materials</topic><topic>Degradation</topic><topic>Dyes</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Environmental protection</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>Exposure</topic><topic>Fe3O4@TiO2</topic><topic>Field emission microscopy</topic><topic>Iron oxides</topic><topic>Kinetic equations</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>PCB</topic><topic>Photocatalysis</topic><topic>photocatalytic degradation</topic><topic>Photodegradation</topic><topic>Pollutants</topic><topic>Polychlorinated biphenyls</topic><topic>Polyethylene glycol</topic><topic>Radiation</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Solar energy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Ultraviolet reflection</topic><topic>Water pollution</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Mao, Jiaheng</creatorcontrib><creatorcontrib>Ouyang, Xingyu</creatorcontrib><creatorcontrib>Yuan, Zhigang</creatorcontrib><creatorcontrib>Song, Xiaoxiang</creatorcontrib><creatorcontrib>Gong, Wenbang</creatorcontrib><creatorcontrib>Mei, Shunqi</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Li</au><au>Zhou, Quan</au><au>Mao, Jiaheng</au><au>Ouyang, Xingyu</au><au>Yuan, Zhigang</au><au>Song, Xiaoxiang</au><au>Gong, Wenbang</au><au>Mei, Shunqi</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets</atitle><jtitle>Applied sciences</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>3574</spage><pages>3574-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Water pollution can be treated through the photocatalytic reaction of TiO2 or TiO2 compounds. A solvothermal method was used to prepare Fe3O4 and Fe3O4@TiO2 composite photocatalyst with (001) high-energy facets exposed in the anatase phase. TiO2 and Fe3O4@TiO2 were characterized by field emission scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy. It was found that the composite Fe3O4@TiO2 can reduce the band gap and maintain a certain proportion of (001) high-energy facet exposure. The band gaps of Fe3O4@TiO2 and TiO2 are 2.5 eV and 2.9 eV, respectively. The exposure percentages of (001) facets of Fe3O4@TiO2 and TiO2 are about 25.2% and 12.1%, respectively. Fe3O4@TiO2 was used for photocatalytic degradation of Acid Red 73, and it was found that Fe3O4@TiO2 could improve the efficiency of photocatalytic degradation of Acid Red 73. The photocatalytic degradation rates of Fe3O4@TiO2 and TiO2 at 24 min were 93.56% and 74.47%, respectively. The cycle experiment of photocatalytic degradation of Acid Red 73 by Fe3O4@TiO2 showed that at the fifth cycle, the rate of dye degradation decreased to 77.05%, but the rate of dye degradation can reach more than 90% after self-cleaning treatment. The photocatalytic degradation mechanism is explained by the energy band theory and the first-order kinetic equation model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12073574</doi><orcidid>https://orcid.org/0000-0002-5907-3525</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-04, Vol.12 (7), p.3574
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_71ea9b26755b458fa7f033f04009b783
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Acid Red 73
Acids
Anatase
Band theory
Composite materials
Degradation
Dyes
Energy
Energy bands
Environmental protection
Ethanol
Experiments
Exposure
Fe3O4@TiO2
Field emission microscopy
Iron oxides
Kinetic equations
Nanocomposites
Nanoparticles
PCB
Photocatalysis
photocatalytic degradation
Photodegradation
Pollutants
Polychlorinated biphenyls
Polyethylene glycol
Radiation
Raman spectroscopy
Scanning electron microscopy
Solar energy
Spectroscopy
Spectrum analysis
Titanium dioxide
Ultraviolet reflection
Water pollution
X-ray diffraction
title Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Photocatalytic%20Degradation%20of%20Acid%20Red%2073%20by%20Fe3O4@TiO2%20Exposed%20(001)%20Facets&rft.jtitle=Applied%20sciences&rft.au=Sun,%20Li&rft.date=2022-04-01&rft.volume=12&rft.issue=7&rft.spage=3574&rft.pages=3574-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12073574&rft_dat=%3Cproquest_doaj_%3E2648973990%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-db967d769df491c6220b4895485d55729fcdaecb3558d766c4cf2056d83472983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648973990&rft_id=info:pmid/&rfr_iscdi=true