Loading…
Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions
Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF 3 and PrF 3 nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distri...
Saved in:
Published in: | Nanoscale research letters 2018-11, Vol.13 (1), p.370-24, Article 370 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3 |
container_end_page | 24 |
container_issue | 1 |
container_start_page | 370 |
container_title | Nanoscale research letters |
container_volume | 13 |
creator | Semashko, Vadim V. Pudovkin, Maksim S. Cefalas, Alkiviadis-Constantinos Zelenikhin, Pavel V. Gavriil, Vassilios E. Nizamutdinov, Alexei S. Kollia, Zoe Ferraro, Angelo Sarantopoulou, Evangelia |
description | Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF
3
and PrF
3
nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles ( |
doi_str_mv | 10.1186/s11671-018-2775-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_71eb7806249a474f902d71ddffbf7809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_71eb7806249a474f902d71ddffbf7809</doaj_id><sourcerecordid>2179234524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</originalsourceid><addsrcrecordid>eNp1kk9vEzEQxVcIREvhA3BBlrhwWfB_716QqihtI1WAUJC4WbO749TRZh3s3aD20-M0oVAkTrZn3vvZHr2ieM3oe8Yq_SExpg0rKatKbowq754Up0wpnU_6-9O8rwUrjTLipHiR0ppSaajRz4sTQaVWvKKnRbf0wy35ChHLOcTxhlz0U4i-Q_IJhrDNJd_2mMh5O_odjEiW0yZMkcyw78llDD-zZeeBzHtsx-hb6MmX0EMki2HECNkVhvSyeOagT_jquJ4V3y7my9lVef35cjE7vy5bJfRYmoY7jYDQaVUzAdpR5nQlG20a47ipgdbSaJSVcAwNKuxAadQCZMUFBXFWLA7cLsDabqPfQLy1Aby9L4S4sscPWcOwMRXVXNYgjXQ15Z1hXedc43K9zqyPB9Z2ajbYtTiMEfpH0Medwd_YVdjZPZIpmQHvjoAYfkyYRrvxqc1jgwHDlCxnpuZCKr6Xvv1Hus4zHvKoskpoSbnWOqvYQdXGkFJE9_AYRu0-D_aQB5vzYPd5sHfZ8-bvXzw4fgcgC_hBkHJrWGH8c_X_qb8AKk7B6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136402666</pqid></control><display><type>article</type><title>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>IngentaConnect Journals</source><creator>Semashko, Vadim V. ; Pudovkin, Maksim S. ; Cefalas, Alkiviadis-Constantinos ; Zelenikhin, Pavel V. ; Gavriil, Vassilios E. ; Nizamutdinov, Alexei S. ; Kollia, Zoe ; Ferraro, Angelo ; Sarantopoulou, Evangelia</creator><creatorcontrib>Semashko, Vadim V. ; Pudovkin, Maksim S. ; Cefalas, Alkiviadis-Constantinos ; Zelenikhin, Pavel V. ; Gavriil, Vassilios E. ; Nizamutdinov, Alexei S. ; Kollia, Zoe ; Ferraro, Angelo ; Sarantopoulou, Evangelia</creatorcontrib><description>Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF
3
and PrF
3
nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (< 10 nm). While tiny size nanoparticles may be well associated with the activation of EGFR, integrin interplay with nanoparticles remains a multifaceted issue. A theoretical motif shows that, within the requisite pN force scale, each ligand adhesion binding site can be activated by a tiny size dielectric nanoparticle via electrical dipole interaction. The size of the active nanoparticle stayed specified by the amount of the surface charges on the ligand adhesion binding site and the nanoparticle, and also by the separating distance between them. The polar component of the electrical dipole force remained inversely proportional to the second power of nanoparticle’s size, evincing that only tiny size dielectric nanoparticles might stimulate cancer cell growth via electrical dipole interactions. The work contributes towards recognising different cytoskeletal stressing modes of cancer cells.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-018-2775-z</identifier><identifier>PMID: 30465280</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation ; Adhesion ; Adhesion tests ; AKT protein ; Binding sites ; Cancer ; Cancer and nanoparticles ; Cell growth ; Chemistry and Materials Science ; Cytoskeleton ; Dipole interactions ; Dipoles ; Epidermal growth factor receptors ; Fluorides ; Integrins ; Lanthanum fluorides ; Ligands ; Materials Science ; Mechanical stimuli ; Mechanosensors ; Mechanotransducers ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Physics of cancer ; Rare earth elements ; Receptors ; Signal transduction ; Size distribution ; Tumorigenesis ; Tumors ; Viability</subject><ispartof>Nanoscale research letters, 2018-11, Vol.13 (1), p.370-24, Article 370</ispartof><rights>The Author(s). 2018</rights><rights>Nanoscale Research Letters is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</citedby><cites>FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2136402666/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2136402666?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30465280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Semashko, Vadim V.</creatorcontrib><creatorcontrib>Pudovkin, Maksim S.</creatorcontrib><creatorcontrib>Cefalas, Alkiviadis-Constantinos</creatorcontrib><creatorcontrib>Zelenikhin, Pavel V.</creatorcontrib><creatorcontrib>Gavriil, Vassilios E.</creatorcontrib><creatorcontrib>Nizamutdinov, Alexei S.</creatorcontrib><creatorcontrib>Kollia, Zoe</creatorcontrib><creatorcontrib>Ferraro, Angelo</creatorcontrib><creatorcontrib>Sarantopoulou, Evangelia</creatorcontrib><title>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF
3
and PrF
3
nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (< 10 nm). While tiny size nanoparticles may be well associated with the activation of EGFR, integrin interplay with nanoparticles remains a multifaceted issue. A theoretical motif shows that, within the requisite pN force scale, each ligand adhesion binding site can be activated by a tiny size dielectric nanoparticle via electrical dipole interaction. The size of the active nanoparticle stayed specified by the amount of the surface charges on the ligand adhesion binding site and the nanoparticle, and also by the separating distance between them. The polar component of the electrical dipole force remained inversely proportional to the second power of nanoparticle’s size, evincing that only tiny size dielectric nanoparticles might stimulate cancer cell growth via electrical dipole interactions. The work contributes towards recognising different cytoskeletal stressing modes of cancer cells.</description><subject>Activation</subject><subject>Adhesion</subject><subject>Adhesion tests</subject><subject>AKT protein</subject><subject>Binding sites</subject><subject>Cancer</subject><subject>Cancer and nanoparticles</subject><subject>Cell growth</subject><subject>Chemistry and Materials Science</subject><subject>Cytoskeleton</subject><subject>Dipole interactions</subject><subject>Dipoles</subject><subject>Epidermal growth factor receptors</subject><subject>Fluorides</subject><subject>Integrins</subject><subject>Lanthanum fluorides</subject><subject>Ligands</subject><subject>Materials Science</subject><subject>Mechanical stimuli</subject><subject>Mechanosensors</subject><subject>Mechanotransducers</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Physics of cancer</subject><subject>Rare earth elements</subject><subject>Receptors</subject><subject>Signal transduction</subject><subject>Size distribution</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Viability</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk9vEzEQxVcIREvhA3BBlrhwWfB_716QqihtI1WAUJC4WbO749TRZh3s3aD20-M0oVAkTrZn3vvZHr2ieM3oe8Yq_SExpg0rKatKbowq754Up0wpnU_6-9O8rwUrjTLipHiR0ppSaajRz4sTQaVWvKKnRbf0wy35ChHLOcTxhlz0U4i-Q_IJhrDNJd_2mMh5O_odjEiW0yZMkcyw78llDD-zZeeBzHtsx-hb6MmX0EMki2HECNkVhvSyeOagT_jquJ4V3y7my9lVef35cjE7vy5bJfRYmoY7jYDQaVUzAdpR5nQlG20a47ipgdbSaJSVcAwNKuxAadQCZMUFBXFWLA7cLsDabqPfQLy1Aby9L4S4sscPWcOwMRXVXNYgjXQ15Z1hXedc43K9zqyPB9Z2ajbYtTiMEfpH0Medwd_YVdjZPZIpmQHvjoAYfkyYRrvxqc1jgwHDlCxnpuZCKr6Xvv1Hus4zHvKoskpoSbnWOqvYQdXGkFJE9_AYRu0-D_aQB5vzYPd5sHfZ8-bvXzw4fgcgC_hBkHJrWGH8c_X_qb8AKk7B6A</recordid><startdate>20181121</startdate><enddate>20181121</enddate><creator>Semashko, Vadim V.</creator><creator>Pudovkin, Maksim S.</creator><creator>Cefalas, Alkiviadis-Constantinos</creator><creator>Zelenikhin, Pavel V.</creator><creator>Gavriil, Vassilios E.</creator><creator>Nizamutdinov, Alexei S.</creator><creator>Kollia, Zoe</creator><creator>Ferraro, Angelo</creator><creator>Sarantopoulou, Evangelia</creator><general>Springer US</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181121</creationdate><title>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</title><author>Semashko, Vadim V. ; Pudovkin, Maksim S. ; Cefalas, Alkiviadis-Constantinos ; Zelenikhin, Pavel V. ; Gavriil, Vassilios E. ; Nizamutdinov, Alexei S. ; Kollia, Zoe ; Ferraro, Angelo ; Sarantopoulou, Evangelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Adhesion</topic><topic>Adhesion tests</topic><topic>AKT protein</topic><topic>Binding sites</topic><topic>Cancer</topic><topic>Cancer and nanoparticles</topic><topic>Cell growth</topic><topic>Chemistry and Materials Science</topic><topic>Cytoskeleton</topic><topic>Dipole interactions</topic><topic>Dipoles</topic><topic>Epidermal growth factor receptors</topic><topic>Fluorides</topic><topic>Integrins</topic><topic>Lanthanum fluorides</topic><topic>Ligands</topic><topic>Materials Science</topic><topic>Mechanical stimuli</topic><topic>Mechanosensors</topic><topic>Mechanotransducers</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Physics of cancer</topic><topic>Rare earth elements</topic><topic>Receptors</topic><topic>Signal transduction</topic><topic>Size distribution</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semashko, Vadim V.</creatorcontrib><creatorcontrib>Pudovkin, Maksim S.</creatorcontrib><creatorcontrib>Cefalas, Alkiviadis-Constantinos</creatorcontrib><creatorcontrib>Zelenikhin, Pavel V.</creatorcontrib><creatorcontrib>Gavriil, Vassilios E.</creatorcontrib><creatorcontrib>Nizamutdinov, Alexei S.</creatorcontrib><creatorcontrib>Kollia, Zoe</creatorcontrib><creatorcontrib>Ferraro, Angelo</creatorcontrib><creatorcontrib>Sarantopoulou, Evangelia</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semashko, Vadim V.</au><au>Pudovkin, Maksim S.</au><au>Cefalas, Alkiviadis-Constantinos</au><au>Zelenikhin, Pavel V.</au><au>Gavriil, Vassilios E.</au><au>Nizamutdinov, Alexei S.</au><au>Kollia, Zoe</au><au>Ferraro, Angelo</au><au>Sarantopoulou, Evangelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2018-11-21</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>370</spage><epage>24</epage><pages>370-24</pages><artnum>370</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF
3
and PrF
3
nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (< 10 nm). While tiny size nanoparticles may be well associated with the activation of EGFR, integrin interplay with nanoparticles remains a multifaceted issue. A theoretical motif shows that, within the requisite pN force scale, each ligand adhesion binding site can be activated by a tiny size dielectric nanoparticle via electrical dipole interaction. The size of the active nanoparticle stayed specified by the amount of the surface charges on the ligand adhesion binding site and the nanoparticle, and also by the separating distance between them. The polar component of the electrical dipole force remained inversely proportional to the second power of nanoparticle’s size, evincing that only tiny size dielectric nanoparticles might stimulate cancer cell growth via electrical dipole interactions. The work contributes towards recognising different cytoskeletal stressing modes of cancer cells.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30465280</pmid><doi>10.1186/s11671-018-2775-z</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2018-11, Vol.13 (1), p.370-24, Article 370 |
issn | 1931-7573 1556-276X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_71eb7806249a474f902d71ddffbf7809 |
source | Publicly Available Content Database; PubMed Central(OpenAccess); IngentaConnect Journals |
subjects | Activation Adhesion Adhesion tests AKT protein Binding sites Cancer Cancer and nanoparticles Cell growth Chemistry and Materials Science Cytoskeleton Dipole interactions Dipoles Epidermal growth factor receptors Fluorides Integrins Lanthanum fluorides Ligands Materials Science Mechanical stimuli Mechanosensors Mechanotransducers Molecular Medicine Nano Express Nanochemistry Nanoparticles Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Physics of cancer Rare earth elements Receptors Signal transduction Size distribution Tumorigenesis Tumors Viability |
title | Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tiny%20Rare-Earth%20Fluoride%20Nanoparticles%20Activate%20Tumour%20Cell%20Growth%20via%20Electrical%20Polar%20Interactions&rft.jtitle=Nanoscale%20research%20letters&rft.au=Semashko,%20Vadim%20V.&rft.date=2018-11-21&rft.volume=13&rft.issue=1&rft.spage=370&rft.epage=24&rft.pages=370-24&rft.artnum=370&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-018-2775-z&rft_dat=%3Cproquest_doaj_%3E2179234524%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136402666&rft_id=info:pmid/30465280&rfr_iscdi=true |