Loading…

Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions

Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF 3 and PrF 3 nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distri...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2018-11, Vol.13 (1), p.370-24, Article 370
Main Authors: Semashko, Vadim V., Pudovkin, Maksim S., Cefalas, Alkiviadis-Constantinos, Zelenikhin, Pavel V., Gavriil, Vassilios E., Nizamutdinov, Alexei S., Kollia, Zoe, Ferraro, Angelo, Sarantopoulou, Evangelia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3
cites cdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3
container_end_page 24
container_issue 1
container_start_page 370
container_title Nanoscale research letters
container_volume 13
creator Semashko, Vadim V.
Pudovkin, Maksim S.
Cefalas, Alkiviadis-Constantinos
Zelenikhin, Pavel V.
Gavriil, Vassilios E.
Nizamutdinov, Alexei S.
Kollia, Zoe
Ferraro, Angelo
Sarantopoulou, Evangelia
description Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF 3 and PrF 3 nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (
doi_str_mv 10.1186/s11671-018-2775-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_71eb7806249a474f902d71ddffbf7809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_71eb7806249a474f902d71ddffbf7809</doaj_id><sourcerecordid>2179234524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</originalsourceid><addsrcrecordid>eNp1kk9vEzEQxVcIREvhA3BBlrhwWfB_716QqihtI1WAUJC4WbO749TRZh3s3aD20-M0oVAkTrZn3vvZHr2ieM3oe8Yq_SExpg0rKatKbowq754Up0wpnU_6-9O8rwUrjTLipHiR0ppSaajRz4sTQaVWvKKnRbf0wy35ChHLOcTxhlz0U4i-Q_IJhrDNJd_2mMh5O_odjEiW0yZMkcyw78llDD-zZeeBzHtsx-hb6MmX0EMki2HECNkVhvSyeOagT_jquJ4V3y7my9lVef35cjE7vy5bJfRYmoY7jYDQaVUzAdpR5nQlG20a47ipgdbSaJSVcAwNKuxAadQCZMUFBXFWLA7cLsDabqPfQLy1Aby9L4S4sscPWcOwMRXVXNYgjXQ15Z1hXedc43K9zqyPB9Z2ajbYtTiMEfpH0Medwd_YVdjZPZIpmQHvjoAYfkyYRrvxqc1jgwHDlCxnpuZCKr6Xvv1Hus4zHvKoskpoSbnWOqvYQdXGkFJE9_AYRu0-D_aQB5vzYPd5sHfZ8-bvXzw4fgcgC_hBkHJrWGH8c_X_qb8AKk7B6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136402666</pqid></control><display><type>article</type><title>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>IngentaConnect Journals</source><creator>Semashko, Vadim V. ; Pudovkin, Maksim S. ; Cefalas, Alkiviadis-Constantinos ; Zelenikhin, Pavel V. ; Gavriil, Vassilios E. ; Nizamutdinov, Alexei S. ; Kollia, Zoe ; Ferraro, Angelo ; Sarantopoulou, Evangelia</creator><creatorcontrib>Semashko, Vadim V. ; Pudovkin, Maksim S. ; Cefalas, Alkiviadis-Constantinos ; Zelenikhin, Pavel V. ; Gavriil, Vassilios E. ; Nizamutdinov, Alexei S. ; Kollia, Zoe ; Ferraro, Angelo ; Sarantopoulou, Evangelia</creatorcontrib><description>Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF 3 and PrF 3 nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (&lt; 10 nm). While tiny size nanoparticles may be well associated with the activation of EGFR, integrin interplay with nanoparticles remains a multifaceted issue. A theoretical motif shows that, within the requisite pN force scale, each ligand adhesion binding site can be activated by a tiny size dielectric nanoparticle via electrical dipole interaction. The size of the active nanoparticle stayed specified by the amount of the surface charges on the ligand adhesion binding site and the nanoparticle, and also by the separating distance between them. The polar component of the electrical dipole force remained inversely proportional to the second power of nanoparticle’s size, evincing that only tiny size dielectric nanoparticles might stimulate cancer cell growth via electrical dipole interactions. The work contributes towards recognising different cytoskeletal stressing modes of cancer cells.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-018-2775-z</identifier><identifier>PMID: 30465280</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation ; Adhesion ; Adhesion tests ; AKT protein ; Binding sites ; Cancer ; Cancer and nanoparticles ; Cell growth ; Chemistry and Materials Science ; Cytoskeleton ; Dipole interactions ; Dipoles ; Epidermal growth factor receptors ; Fluorides ; Integrins ; Lanthanum fluorides ; Ligands ; Materials Science ; Mechanical stimuli ; Mechanosensors ; Mechanotransducers ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoparticles ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Physics of cancer ; Rare earth elements ; Receptors ; Signal transduction ; Size distribution ; Tumorigenesis ; Tumors ; Viability</subject><ispartof>Nanoscale research letters, 2018-11, Vol.13 (1), p.370-24, Article 370</ispartof><rights>The Author(s). 2018</rights><rights>Nanoscale Research Letters is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</citedby><cites>FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2136402666/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2136402666?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30465280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Semashko, Vadim V.</creatorcontrib><creatorcontrib>Pudovkin, Maksim S.</creatorcontrib><creatorcontrib>Cefalas, Alkiviadis-Constantinos</creatorcontrib><creatorcontrib>Zelenikhin, Pavel V.</creatorcontrib><creatorcontrib>Gavriil, Vassilios E.</creatorcontrib><creatorcontrib>Nizamutdinov, Alexei S.</creatorcontrib><creatorcontrib>Kollia, Zoe</creatorcontrib><creatorcontrib>Ferraro, Angelo</creatorcontrib><creatorcontrib>Sarantopoulou, Evangelia</creatorcontrib><title>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF 3 and PrF 3 nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (&lt; 10 nm). While tiny size nanoparticles may be well associated with the activation of EGFR, integrin interplay with nanoparticles remains a multifaceted issue. A theoretical motif shows that, within the requisite pN force scale, each ligand adhesion binding site can be activated by a tiny size dielectric nanoparticle via electrical dipole interaction. The size of the active nanoparticle stayed specified by the amount of the surface charges on the ligand adhesion binding site and the nanoparticle, and also by the separating distance between them. The polar component of the electrical dipole force remained inversely proportional to the second power of nanoparticle’s size, evincing that only tiny size dielectric nanoparticles might stimulate cancer cell growth via electrical dipole interactions. The work contributes towards recognising different cytoskeletal stressing modes of cancer cells.</description><subject>Activation</subject><subject>Adhesion</subject><subject>Adhesion tests</subject><subject>AKT protein</subject><subject>Binding sites</subject><subject>Cancer</subject><subject>Cancer and nanoparticles</subject><subject>Cell growth</subject><subject>Chemistry and Materials Science</subject><subject>Cytoskeleton</subject><subject>Dipole interactions</subject><subject>Dipoles</subject><subject>Epidermal growth factor receptors</subject><subject>Fluorides</subject><subject>Integrins</subject><subject>Lanthanum fluorides</subject><subject>Ligands</subject><subject>Materials Science</subject><subject>Mechanical stimuli</subject><subject>Mechanosensors</subject><subject>Mechanotransducers</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Physics of cancer</subject><subject>Rare earth elements</subject><subject>Receptors</subject><subject>Signal transduction</subject><subject>Size distribution</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Viability</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk9vEzEQxVcIREvhA3BBlrhwWfB_716QqihtI1WAUJC4WbO749TRZh3s3aD20-M0oVAkTrZn3vvZHr2ieM3oe8Yq_SExpg0rKatKbowq754Up0wpnU_6-9O8rwUrjTLipHiR0ppSaajRz4sTQaVWvKKnRbf0wy35ChHLOcTxhlz0U4i-Q_IJhrDNJd_2mMh5O_odjEiW0yZMkcyw78llDD-zZeeBzHtsx-hb6MmX0EMki2HECNkVhvSyeOagT_jquJ4V3y7my9lVef35cjE7vy5bJfRYmoY7jYDQaVUzAdpR5nQlG20a47ipgdbSaJSVcAwNKuxAadQCZMUFBXFWLA7cLsDabqPfQLy1Aby9L4S4sscPWcOwMRXVXNYgjXQ15Z1hXedc43K9zqyPB9Z2ajbYtTiMEfpH0Medwd_YVdjZPZIpmQHvjoAYfkyYRrvxqc1jgwHDlCxnpuZCKr6Xvv1Hus4zHvKoskpoSbnWOqvYQdXGkFJE9_AYRu0-D_aQB5vzYPd5sHfZ8-bvXzw4fgcgC_hBkHJrWGH8c_X_qb8AKk7B6A</recordid><startdate>20181121</startdate><enddate>20181121</enddate><creator>Semashko, Vadim V.</creator><creator>Pudovkin, Maksim S.</creator><creator>Cefalas, Alkiviadis-Constantinos</creator><creator>Zelenikhin, Pavel V.</creator><creator>Gavriil, Vassilios E.</creator><creator>Nizamutdinov, Alexei S.</creator><creator>Kollia, Zoe</creator><creator>Ferraro, Angelo</creator><creator>Sarantopoulou, Evangelia</creator><general>Springer US</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181121</creationdate><title>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</title><author>Semashko, Vadim V. ; Pudovkin, Maksim S. ; Cefalas, Alkiviadis-Constantinos ; Zelenikhin, Pavel V. ; Gavriil, Vassilios E. ; Nizamutdinov, Alexei S. ; Kollia, Zoe ; Ferraro, Angelo ; Sarantopoulou, Evangelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Adhesion</topic><topic>Adhesion tests</topic><topic>AKT protein</topic><topic>Binding sites</topic><topic>Cancer</topic><topic>Cancer and nanoparticles</topic><topic>Cell growth</topic><topic>Chemistry and Materials Science</topic><topic>Cytoskeleton</topic><topic>Dipole interactions</topic><topic>Dipoles</topic><topic>Epidermal growth factor receptors</topic><topic>Fluorides</topic><topic>Integrins</topic><topic>Lanthanum fluorides</topic><topic>Ligands</topic><topic>Materials Science</topic><topic>Mechanical stimuli</topic><topic>Mechanosensors</topic><topic>Mechanotransducers</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Physics of cancer</topic><topic>Rare earth elements</topic><topic>Receptors</topic><topic>Signal transduction</topic><topic>Size distribution</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semashko, Vadim V.</creatorcontrib><creatorcontrib>Pudovkin, Maksim S.</creatorcontrib><creatorcontrib>Cefalas, Alkiviadis-Constantinos</creatorcontrib><creatorcontrib>Zelenikhin, Pavel V.</creatorcontrib><creatorcontrib>Gavriil, Vassilios E.</creatorcontrib><creatorcontrib>Nizamutdinov, Alexei S.</creatorcontrib><creatorcontrib>Kollia, Zoe</creatorcontrib><creatorcontrib>Ferraro, Angelo</creatorcontrib><creatorcontrib>Sarantopoulou, Evangelia</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semashko, Vadim V.</au><au>Pudovkin, Maksim S.</au><au>Cefalas, Alkiviadis-Constantinos</au><au>Zelenikhin, Pavel V.</au><au>Gavriil, Vassilios E.</au><au>Nizamutdinov, Alexei S.</au><au>Kollia, Zoe</au><au>Ferraro, Angelo</au><au>Sarantopoulou, Evangelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2018-11-21</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>370</spage><epage>24</epage><pages>370-24</pages><artnum>370</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>Localised extracellular interactions between nanoparticles and transmembrane signal receptors may well activate cancer cell growth. Herein, tiny LaF 3 and PrF 3 nanoparticles in DMEM+FBS suspensions stimulated tumour cell growth in three different human cell lines (A549, SW837 and MCF7). Size distribution of nanoparticles, activation of AKT and ERK signalling pathways and viability tests pointed to mechanical stimulation of ligand adhesion binding sites of integrins and EGFR via a synergistic action of an ensemble of tiny size nanoparticles (&lt; 10 nm). While tiny size nanoparticles may be well associated with the activation of EGFR, integrin interplay with nanoparticles remains a multifaceted issue. A theoretical motif shows that, within the requisite pN force scale, each ligand adhesion binding site can be activated by a tiny size dielectric nanoparticle via electrical dipole interaction. The size of the active nanoparticle stayed specified by the amount of the surface charges on the ligand adhesion binding site and the nanoparticle, and also by the separating distance between them. The polar component of the electrical dipole force remained inversely proportional to the second power of nanoparticle’s size, evincing that only tiny size dielectric nanoparticles might stimulate cancer cell growth via electrical dipole interactions. The work contributes towards recognising different cytoskeletal stressing modes of cancer cells.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30465280</pmid><doi>10.1186/s11671-018-2775-z</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2018-11, Vol.13 (1), p.370-24, Article 370
issn 1931-7573
1556-276X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_71eb7806249a474f902d71ddffbf7809
source Publicly Available Content Database; PubMed Central(OpenAccess); IngentaConnect Journals
subjects Activation
Adhesion
Adhesion tests
AKT protein
Binding sites
Cancer
Cancer and nanoparticles
Cell growth
Chemistry and Materials Science
Cytoskeleton
Dipole interactions
Dipoles
Epidermal growth factor receptors
Fluorides
Integrins
Lanthanum fluorides
Ligands
Materials Science
Mechanical stimuli
Mechanosensors
Mechanotransducers
Molecular Medicine
Nano Express
Nanochemistry
Nanoparticles
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Physics of cancer
Rare earth elements
Receptors
Signal transduction
Size distribution
Tumorigenesis
Tumors
Viability
title Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tiny%20Rare-Earth%20Fluoride%20Nanoparticles%20Activate%20Tumour%20Cell%20Growth%20via%20Electrical%20Polar%20Interactions&rft.jtitle=Nanoscale%20research%20letters&rft.au=Semashko,%20Vadim%20V.&rft.date=2018-11-21&rft.volume=13&rft.issue=1&rft.spage=370&rft.epage=24&rft.pages=370-24&rft.artnum=370&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-018-2775-z&rft_dat=%3Cproquest_doaj_%3E2179234524%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-7b2f6eaead65913a6f01f684b67b7f279a09476e483f1e7e5eda56e63a48230a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136402666&rft_id=info:pmid/30465280&rfr_iscdi=true