Loading…

In situ single-atom array synthesis using dynamic holographic optical tweezers

Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-10, Vol.7 (1), p.13317-13317, Article 13317
Main Authors: Kim, Hyosub, Lee, Woojun, Lee, Han-gyeol, Jo, Hanlae, Song, Yunheung, Ahn, Jaewook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2 N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures. It would be desirable to have a reliable and scalable method to manipulate neutral-atoms for the creation of controllable quantum systems. Here the authors demonstrate real-time transport of single rubidium atoms in holographic microtraps controlled by liquid-crystal spatial light modulators.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13317