Loading…

Proton mediated spin state transition of cobalt heme analogs

The spin state transition from low spin to high spin upon substrate addition is one of the key steps in cytochrome P450 catalysis. External perturbations such as pH and hydrogen bonding can also trigger the spin state transition of hemes through deprotonated histidine (e.g. Cytochrome c ). In this w...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-05, Vol.10 (1), p.2303-2303, Article 2303
Main Authors: Zhao, Jianping, Peng, Qian, Wang, Zijian, Xu, Wei, Xiao, Hongyan, Wu, Qi, Sun, Hao-Ling, Ma, Fang, Zhao, Jiyong, Sun, Cheng-Jun, Zhao, Jianzhang, Li, Jianfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-e57da4b4af8b7cb0e7d9b27b058125b8cf908afdbcc874a9806b5d5fa2213c9f3
cites cdi_FETCH-LOGICAL-c567t-e57da4b4af8b7cb0e7d9b27b058125b8cf908afdbcc874a9806b5d5fa2213c9f3
container_end_page 2303
container_issue 1
container_start_page 2303
container_title Nature communications
container_volume 10
creator Zhao, Jianping
Peng, Qian
Wang, Zijian
Xu, Wei
Xiao, Hongyan
Wu, Qi
Sun, Hao-Ling
Ma, Fang
Zhao, Jiyong
Sun, Cheng-Jun
Zhao, Jianzhang
Li, Jianfeng
description The spin state transition from low spin to high spin upon substrate addition is one of the key steps in cytochrome P450 catalysis. External perturbations such as pH and hydrogen bonding can also trigger the spin state transition of hemes through deprotonated histidine (e.g. Cytochrome c ). In this work, we report the isolated 2-methylimidazole Cobalt(II) [Co(TPP)(2-MeHIm)] and [Co(TTP)(2-MeHIm)], and the corresponding 2-methylimidazolate derivatives where the N−H proton of axial 2-MeHIm is removed. Interestingly, various spectroscopies including EPR and XAFS determine a high-spin state ( S  = 3/2) for the imidazolate derivatives, in contrast to the low-spin state ( S  = 1/2) of all known imidazole analogs. DFT assisted stereoelectronic investigations are applied to understand the metal-ligand interactions, which suggest that the dramatically displaced metal center allowing a promotion e g (d π ) →  b 1g ( d x 2 - y 2 ) is crucial for the occurrence of the spin state transition. Studying the electronic structures and spin transitions of synthetic heme analogs is crucial to advancing our understanding of heme enzyme mechanisms. Here the authors show that a Co(II) porphyrin complex undergoes an unexpected spin state transition upon deprotonation of its axial imidazole ligand.
doi_str_mv 10.1038/s41467-019-10357-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_71fe878e30de42d5a9f2910b5aec1f63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_71fe878e30de42d5a9f2910b5aec1f63</doaj_id><sourcerecordid>2231850491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-e57da4b4af8b7cb0e7d9b27b058125b8cf908afdbcc874a9806b5d5fa2213c9f3</originalsourceid><addsrcrecordid>eNp9Uk1vFSEUnRiNbWr_gAsz0Y2bUT4HSIyJaVpt0kQXuibAXN7jZR48gdfE_np5nVpbF7Lhwj33XO7hdN1LjN5hROX7wjAbxYCwGtqZi-HmSXdMEMMDFoQ-fRAfdaelbFBbVGHJ2PPuiGJMBEbjcffhW041xX4LUzAVpr7sQuxLbXFfs4kl1NDSyfcuWTPXfg1b6E00c1qVF90zb-YCp3f7Sffj4vz72Zfh6uvny7NPV4Pjo6gDcDEZZpnx0gpnEYhJWSIs4hITbqXzCknjJ-ucFMwoiUbLJ-4NIZg65elJd7nwTsls9C6Hrcm_dDJB316kvNIm1-Bm0AJ7kEICRRMwMnGjPFEYWW7AYT_SxvVx4drtbRvaQWxjzo9IH2diWOtVutYjp03wsRG8XghSqUEXFyq4tUsxgqsaczIKghro7V2XnH7uoVS9DcXBPJsIaV80IRRLjpjCDfrmH-gm7XMT-IAiqkmj2KErWVAup1Iy-PsXY6QPhtCLIXQzhL41hL5pRa8eznpf8uf7G4AugNJScQX5b-__0P4GxTzBHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229908946</pqid></control><display><type>article</type><title>Proton mediated spin state transition of cobalt heme analogs</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhao, Jianping ; Peng, Qian ; Wang, Zijian ; Xu, Wei ; Xiao, Hongyan ; Wu, Qi ; Sun, Hao-Ling ; Ma, Fang ; Zhao, Jiyong ; Sun, Cheng-Jun ; Zhao, Jianzhang ; Li, Jianfeng</creator><creatorcontrib>Zhao, Jianping ; Peng, Qian ; Wang, Zijian ; Xu, Wei ; Xiao, Hongyan ; Wu, Qi ; Sun, Hao-Ling ; Ma, Fang ; Zhao, Jiyong ; Sun, Cheng-Jun ; Zhao, Jianzhang ; Li, Jianfeng ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The spin state transition from low spin to high spin upon substrate addition is one of the key steps in cytochrome P450 catalysis. External perturbations such as pH and hydrogen bonding can also trigger the spin state transition of hemes through deprotonated histidine (e.g. Cytochrome c ). In this work, we report the isolated 2-methylimidazole Cobalt(II) [Co(TPP)(2-MeHIm)] and [Co(TTP)(2-MeHIm)], and the corresponding 2-methylimidazolate derivatives where the N−H proton of axial 2-MeHIm is removed. Interestingly, various spectroscopies including EPR and XAFS determine a high-spin state ( S  = 3/2) for the imidazolate derivatives, in contrast to the low-spin state ( S  = 1/2) of all known imidazole analogs. DFT assisted stereoelectronic investigations are applied to understand the metal-ligand interactions, which suggest that the dramatically displaced metal center allowing a promotion e g (d π ) →  b 1g ( d x 2 - y 2 ) is crucial for the occurrence of the spin state transition. Studying the electronic structures and spin transitions of synthetic heme analogs is crucial to advancing our understanding of heme enzyme mechanisms. Here the authors show that a Co(II) porphyrin complex undergoes an unexpected spin state transition upon deprotonation of its axial imidazole ligand.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-10357-z</identifier><identifier>PMID: 31127106</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/263/406/910 ; 639/638/263/49/1141 ; Analogs ; Biocatalysis ; Catalysis ; Cobalt ; Cobalt - chemistry ; Cobalt - metabolism ; Crystallography, X-Ray ; Cytochrome ; Cytochrome c ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Cytochromes P450 ; Derivatives ; Distributed processing ; Electron Spin Resonance Spectroscopy ; Heme ; Heme - analogs &amp; derivatives ; Heme - chemistry ; Heme - metabolism ; Histidine ; Histidine - chemistry ; Humanities and Social Sciences ; Hydrogen bonding ; Hydrogen-Ion Concentration ; Imidazole ; Imidazoles - metabolism ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Iron - chemistry ; Ligands ; Logic programming ; Metals ; multidisciplinary ; Oxidation-Reduction ; Protons ; Science ; Science (multidisciplinary) ; Substrates</subject><ispartof>Nature communications, 2019-05, Vol.10 (1), p.2303-2303, Article 2303</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-e57da4b4af8b7cb0e7d9b27b058125b8cf908afdbcc874a9806b5d5fa2213c9f3</citedby><cites>FETCH-LOGICAL-c567t-e57da4b4af8b7cb0e7d9b27b058125b8cf908afdbcc874a9806b5d5fa2213c9f3</cites><orcidid>0000-0002-1218-5976 ; 0000-0001-8006-2399 ; 0000-0003-1058-9149 ; 0000-0002-4876-8970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2229908946/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2229908946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31127106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1526720$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jianping</creatorcontrib><creatorcontrib>Peng, Qian</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Xiao, Hongyan</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Sun, Hao-Ling</creatorcontrib><creatorcontrib>Ma, Fang</creatorcontrib><creatorcontrib>Zhao, Jiyong</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Zhao, Jianzhang</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Proton mediated spin state transition of cobalt heme analogs</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The spin state transition from low spin to high spin upon substrate addition is one of the key steps in cytochrome P450 catalysis. External perturbations such as pH and hydrogen bonding can also trigger the spin state transition of hemes through deprotonated histidine (e.g. Cytochrome c ). In this work, we report the isolated 2-methylimidazole Cobalt(II) [Co(TPP)(2-MeHIm)] and [Co(TTP)(2-MeHIm)], and the corresponding 2-methylimidazolate derivatives where the N−H proton of axial 2-MeHIm is removed. Interestingly, various spectroscopies including EPR and XAFS determine a high-spin state ( S  = 3/2) for the imidazolate derivatives, in contrast to the low-spin state ( S  = 1/2) of all known imidazole analogs. DFT assisted stereoelectronic investigations are applied to understand the metal-ligand interactions, which suggest that the dramatically displaced metal center allowing a promotion e g (d π ) →  b 1g ( d x 2 - y 2 ) is crucial for the occurrence of the spin state transition. Studying the electronic structures and spin transitions of synthetic heme analogs is crucial to advancing our understanding of heme enzyme mechanisms. Here the authors show that a Co(II) porphyrin complex undergoes an unexpected spin state transition upon deprotonation of its axial imidazole ligand.</description><subject>639/638/263/406/910</subject><subject>639/638/263/49/1141</subject><subject>Analogs</subject><subject>Biocatalysis</subject><subject>Catalysis</subject><subject>Cobalt</subject><subject>Cobalt - chemistry</subject><subject>Cobalt - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Cytochromes P450</subject><subject>Derivatives</subject><subject>Distributed processing</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Heme</subject><subject>Heme - analogs &amp; derivatives</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>Histidine</subject><subject>Histidine - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen bonding</subject><subject>Hydrogen-Ion Concentration</subject><subject>Imidazole</subject><subject>Imidazoles - metabolism</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Iron - chemistry</subject><subject>Ligands</subject><subject>Logic programming</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Oxidation-Reduction</subject><subject>Protons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1vFSEUnRiNbWr_gAsz0Y2bUT4HSIyJaVpt0kQXuibAXN7jZR48gdfE_np5nVpbF7Lhwj33XO7hdN1LjN5hROX7wjAbxYCwGtqZi-HmSXdMEMMDFoQ-fRAfdaelbFBbVGHJ2PPuiGJMBEbjcffhW041xX4LUzAVpr7sQuxLbXFfs4kl1NDSyfcuWTPXfg1b6E00c1qVF90zb-YCp3f7Sffj4vz72Zfh6uvny7NPV4Pjo6gDcDEZZpnx0gpnEYhJWSIs4hITbqXzCknjJ-ucFMwoiUbLJ-4NIZg65elJd7nwTsls9C6Hrcm_dDJB316kvNIm1-Bm0AJ7kEICRRMwMnGjPFEYWW7AYT_SxvVx4drtbRvaQWxjzo9IH2diWOtVutYjp03wsRG8XghSqUEXFyq4tUsxgqsaczIKghro7V2XnH7uoVS9DcXBPJsIaV80IRRLjpjCDfrmH-gm7XMT-IAiqkmj2KErWVAup1Iy-PsXY6QPhtCLIXQzhL41hL5pRa8eznpf8uf7G4AugNJScQX5b-__0P4GxTzBHA</recordid><startdate>20190524</startdate><enddate>20190524</enddate><creator>Zhao, Jianping</creator><creator>Peng, Qian</creator><creator>Wang, Zijian</creator><creator>Xu, Wei</creator><creator>Xiao, Hongyan</creator><creator>Wu, Qi</creator><creator>Sun, Hao-Ling</creator><creator>Ma, Fang</creator><creator>Zhao, Jiyong</creator><creator>Sun, Cheng-Jun</creator><creator>Zhao, Jianzhang</creator><creator>Li, Jianfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1218-5976</orcidid><orcidid>https://orcid.org/0000-0001-8006-2399</orcidid><orcidid>https://orcid.org/0000-0003-1058-9149</orcidid><orcidid>https://orcid.org/0000-0002-4876-8970</orcidid></search><sort><creationdate>20190524</creationdate><title>Proton mediated spin state transition of cobalt heme analogs</title><author>Zhao, Jianping ; Peng, Qian ; Wang, Zijian ; Xu, Wei ; Xiao, Hongyan ; Wu, Qi ; Sun, Hao-Ling ; Ma, Fang ; Zhao, Jiyong ; Sun, Cheng-Jun ; Zhao, Jianzhang ; Li, Jianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-e57da4b4af8b7cb0e7d9b27b058125b8cf908afdbcc874a9806b5d5fa2213c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/638/263/406/910</topic><topic>639/638/263/49/1141</topic><topic>Analogs</topic><topic>Biocatalysis</topic><topic>Catalysis</topic><topic>Cobalt</topic><topic>Cobalt - chemistry</topic><topic>Cobalt - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Cytochromes P450</topic><topic>Derivatives</topic><topic>Distributed processing</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Heme</topic><topic>Heme - analogs &amp; derivatives</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>Histidine</topic><topic>Histidine - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen bonding</topic><topic>Hydrogen-Ion Concentration</topic><topic>Imidazole</topic><topic>Imidazoles - metabolism</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Iron - chemistry</topic><topic>Ligands</topic><topic>Logic programming</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Oxidation-Reduction</topic><topic>Protons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jianping</creatorcontrib><creatorcontrib>Peng, Qian</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Xiao, Hongyan</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Sun, Hao-Ling</creatorcontrib><creatorcontrib>Ma, Fang</creatorcontrib><creatorcontrib>Zhao, Jiyong</creatorcontrib><creatorcontrib>Sun, Cheng-Jun</creatorcontrib><creatorcontrib>Zhao, Jianzhang</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jianping</au><au>Peng, Qian</au><au>Wang, Zijian</au><au>Xu, Wei</au><au>Xiao, Hongyan</au><au>Wu, Qi</au><au>Sun, Hao-Ling</au><au>Ma, Fang</au><au>Zhao, Jiyong</au><au>Sun, Cheng-Jun</au><au>Zhao, Jianzhang</au><au>Li, Jianfeng</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton mediated spin state transition of cobalt heme analogs</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-05-24</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2303</spage><epage>2303</epage><pages>2303-2303</pages><artnum>2303</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The spin state transition from low spin to high spin upon substrate addition is one of the key steps in cytochrome P450 catalysis. External perturbations such as pH and hydrogen bonding can also trigger the spin state transition of hemes through deprotonated histidine (e.g. Cytochrome c ). In this work, we report the isolated 2-methylimidazole Cobalt(II) [Co(TPP)(2-MeHIm)] and [Co(TTP)(2-MeHIm)], and the corresponding 2-methylimidazolate derivatives where the N−H proton of axial 2-MeHIm is removed. Interestingly, various spectroscopies including EPR and XAFS determine a high-spin state ( S  = 3/2) for the imidazolate derivatives, in contrast to the low-spin state ( S  = 1/2) of all known imidazole analogs. DFT assisted stereoelectronic investigations are applied to understand the metal-ligand interactions, which suggest that the dramatically displaced metal center allowing a promotion e g (d π ) →  b 1g ( d x 2 - y 2 ) is crucial for the occurrence of the spin state transition. Studying the electronic structures and spin transitions of synthetic heme analogs is crucial to advancing our understanding of heme enzyme mechanisms. Here the authors show that a Co(II) porphyrin complex undergoes an unexpected spin state transition upon deprotonation of its axial imidazole ligand.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31127106</pmid><doi>10.1038/s41467-019-10357-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1218-5976</orcidid><orcidid>https://orcid.org/0000-0001-8006-2399</orcidid><orcidid>https://orcid.org/0000-0003-1058-9149</orcidid><orcidid>https://orcid.org/0000-0002-4876-8970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-05, Vol.10 (1), p.2303-2303, Article 2303
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_71fe878e30de42d5a9f2910b5aec1f63
source PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/638/263/406/910
639/638/263/49/1141
Analogs
Biocatalysis
Catalysis
Cobalt
Cobalt - chemistry
Cobalt - metabolism
Crystallography, X-Ray
Cytochrome
Cytochrome c
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
Cytochromes P450
Derivatives
Distributed processing
Electron Spin Resonance Spectroscopy
Heme
Heme - analogs & derivatives
Heme - chemistry
Heme - metabolism
Histidine
Histidine - chemistry
Humanities and Social Sciences
Hydrogen bonding
Hydrogen-Ion Concentration
Imidazole
Imidazoles - metabolism
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Iron - chemistry
Ligands
Logic programming
Metals
multidisciplinary
Oxidation-Reduction
Protons
Science
Science (multidisciplinary)
Substrates
title Proton mediated spin state transition of cobalt heme analogs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20mediated%20spin%20state%20transition%20of%20cobalt%20heme%20analogs&rft.jtitle=Nature%20communications&rft.au=Zhao,%20Jianping&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-05-24&rft.volume=10&rft.issue=1&rft.spage=2303&rft.epage=2303&rft.pages=2303-2303&rft.artnum=2303&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-10357-z&rft_dat=%3Cproquest_doaj_%3E2231850491%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-e57da4b4af8b7cb0e7d9b27b058125b8cf908afdbcc874a9806b5d5fa2213c9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2229908946&rft_id=info:pmid/31127106&rfr_iscdi=true