Loading…

On the Mechanism of Membrane Permeabilization by Tamoxifen and 4-Hydroxytamoxifen

Tamoxifen (TMX), commonly used in complementary therapy for breast cancer, also displays known effects on the structure and function of biological membranes. This work presents an experimental and simulation study on the permeabilization of model phospholipid membranes by TMX and its derivative 4-hy...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2023-02, Vol.13 (3), p.292
Main Authors: Ortiz, Julia, Teruel, José A, Aranda, Francisco J, Ortiz, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tamoxifen (TMX), commonly used in complementary therapy for breast cancer, also displays known effects on the structure and function of biological membranes. This work presents an experimental and simulation study on the permeabilization of model phospholipid membranes by TMX and its derivative 4-hydroxytamoxifen (HTMX). TMX induces rapid and extensive vesicle contents leakage in phosphatidylcholine (PC) liposomes, with the effect of HTMX being much weaker. Fitting of the leakage curves for TMX, yields two rate constants, corresponding to a fast and a slow process, whereas in the case of HTMX, only the slow process takes place. Interestingly, incorporation of phosphatidylglycerol (PG) or phosphatidylethanolamine (PE) protects PC membranes from TMXinduced permeabilization. Fourier-transform infrared spectroscopy (FTIR) shows that, in the presence of TMX there is a shift in the ν band frequency, corresponding to an increase in conformers, and a shift in the ν band frequency, indicating a dehydration of the polar region. A preferential association of TMX with PC, in mixed PC/PE systems, is observed by differential scanning calorimetry. Molecular dynamics (MD) simulations support the experimental results, and provide feasible explanations to the protecting effect of PG and PE. These findings add new information to explain the various mechanisms of the anticancer actions of TMX, not related to the estrogen receptor, and potential side effects of this drug.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes13030292