Loading…

Computational Analysis of Active and Passive Flow Control for Backward Facing Step

The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the...

Full description

Saved in:
Bibliographic Details
Published in:Computation 2022-01, Vol.10 (1), p.12
Main Authors: Moulinos, Iosif, Manopoulos, Christos, Tsangaris, Sokrates
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3
cites cdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3
container_end_page
container_issue 1
container_start_page 12
container_title Computation
container_volume 10
creator Moulinos, Iosif
Manopoulos, Christos
Tsangaris, Sokrates
description The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.
doi_str_mv 10.3390/computation10010012
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_722c0e1627a540cfb7522fe0eb1bbd15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_722c0e1627a540cfb7522fe0eb1bbd15</doaj_id><sourcerecordid>2621279539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</originalsourceid><addsrcrecordid>eNptUUtLw0AQDqJgqf0FXhY8V_eV7u6xBquFguLjvEz2UVLTbNxNlf57EyvqwWGY5zffwEyWnRN8yZjCVyZs210HXRUagvGg9CgbUSzUlBEljv_Ep9kkpQ3uRREmKR5lj8XvNNRo3pt9qhIKHs1NV707BI1FD5DSEC_q8IGK0HQx1MiHiK7BvH5AtGgBpmrW6Klz7Vl24qFObvLtx9nL4ua5uJuu7m-XxXw1NUzKbgpSAsPcKsFzzIeME0a8kV5w6UtSCqAMz4SVpVWu71nBifBcgQfCqGXjbHngtQE2uo3VFuJeB6j0VyHEtYbYVaZ2WlBqsCMzKiDn2PhS5JR6h12_prQk77kuDlxtDG87lzq9CbvYHyNpOqOECpUz1aPYAWViSCk6_7OVYD38Qv_zC_YJ44F-mA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621279539</pqid></control><display><type>article</type><title>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</title><source>Publicly Available Content Database</source><creator>Moulinos, Iosif ; Manopoulos, Christos ; Tsangaris, Sokrates</creator><creatorcontrib>Moulinos, Iosif ; Manopoulos, Christos ; Tsangaris, Sokrates</creatorcontrib><description>The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.</description><identifier>ISSN: 2079-3197</identifier><identifier>EISSN: 2079-3197</identifier><identifier>DOI: 10.3390/computation10010012</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>active and passive flow control ; Active control ; Amplitudes ; backward facing step ; Backward facing steps ; Boundary conditions ; curvilinear immersed boundary method ; elastic membrane ; External pressure ; Finite volume method ; Flow control ; Flow separation ; Flow velocity ; Fluid flow ; Fluid-structure interaction ; Membranes ; oscillating surface ; Reversed flow ; Reynolds number ; Separation ; Unsteady flow ; Wall flow</subject><ispartof>Computation, 2022-01, Vol.10 (1), p.12</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</citedby><cites>FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</cites><orcidid>0000-0002-3560-4221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621279539/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621279539?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Moulinos, Iosif</creatorcontrib><creatorcontrib>Manopoulos, Christos</creatorcontrib><creatorcontrib>Tsangaris, Sokrates</creatorcontrib><title>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</title><title>Computation</title><description>The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.</description><subject>active and passive flow control</subject><subject>Active control</subject><subject>Amplitudes</subject><subject>backward facing step</subject><subject>Backward facing steps</subject><subject>Boundary conditions</subject><subject>curvilinear immersed boundary method</subject><subject>elastic membrane</subject><subject>External pressure</subject><subject>Finite volume method</subject><subject>Flow control</subject><subject>Flow separation</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Membranes</subject><subject>oscillating surface</subject><subject>Reversed flow</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Unsteady flow</subject><subject>Wall flow</subject><issn>2079-3197</issn><issn>2079-3197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUUtLw0AQDqJgqf0FXhY8V_eV7u6xBquFguLjvEz2UVLTbNxNlf57EyvqwWGY5zffwEyWnRN8yZjCVyZs210HXRUagvGg9CgbUSzUlBEljv_Ep9kkpQ3uRREmKR5lj8XvNNRo3pt9qhIKHs1NV707BI1FD5DSEC_q8IGK0HQx1MiHiK7BvH5AtGgBpmrW6Klz7Vl24qFObvLtx9nL4ua5uJuu7m-XxXw1NUzKbgpSAsPcKsFzzIeME0a8kV5w6UtSCqAMz4SVpVWu71nBifBcgQfCqGXjbHngtQE2uo3VFuJeB6j0VyHEtYbYVaZ2WlBqsCMzKiDn2PhS5JR6h12_prQk77kuDlxtDG87lzq9CbvYHyNpOqOECpUz1aPYAWViSCk6_7OVYD38Qv_zC_YJ44F-mA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Moulinos, Iosif</creator><creator>Manopoulos, Christos</creator><creator>Tsangaris, Sokrates</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3560-4221</orcidid></search><sort><creationdate>20220101</creationdate><title>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</title><author>Moulinos, Iosif ; Manopoulos, Christos ; Tsangaris, Sokrates</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>active and passive flow control</topic><topic>Active control</topic><topic>Amplitudes</topic><topic>backward facing step</topic><topic>Backward facing steps</topic><topic>Boundary conditions</topic><topic>curvilinear immersed boundary method</topic><topic>elastic membrane</topic><topic>External pressure</topic><topic>Finite volume method</topic><topic>Flow control</topic><topic>Flow separation</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Membranes</topic><topic>oscillating surface</topic><topic>Reversed flow</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Unsteady flow</topic><topic>Wall flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulinos, Iosif</creatorcontrib><creatorcontrib>Manopoulos, Christos</creatorcontrib><creatorcontrib>Tsangaris, Sokrates</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulinos, Iosif</au><au>Manopoulos, Christos</au><au>Tsangaris, Sokrates</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</atitle><jtitle>Computation</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>12</spage><pages>12-</pages><issn>2079-3197</issn><eissn>2079-3197</eissn><abstract>The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/computation10010012</doi><orcidid>https://orcid.org/0000-0002-3560-4221</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-3197
ispartof Computation, 2022-01, Vol.10 (1), p.12
issn 2079-3197
2079-3197
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_722c0e1627a540cfb7522fe0eb1bbd15
source Publicly Available Content Database
subjects active and passive flow control
Active control
Amplitudes
backward facing step
Backward facing steps
Boundary conditions
curvilinear immersed boundary method
elastic membrane
External pressure
Finite volume method
Flow control
Flow separation
Flow velocity
Fluid flow
Fluid-structure interaction
Membranes
oscillating surface
Reversed flow
Reynolds number
Separation
Unsteady flow
Wall flow
title Computational Analysis of Active and Passive Flow Control for Backward Facing Step
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Analysis%20of%20Active%20and%20Passive%20Flow%20Control%20for%20Backward%20Facing%20Step&rft.jtitle=Computation&rft.au=Moulinos,%20Iosif&rft.date=2022-01-01&rft.volume=10&rft.issue=1&rft.spage=12&rft.pages=12-&rft.issn=2079-3197&rft.eissn=2079-3197&rft_id=info:doi/10.3390/computation10010012&rft_dat=%3Cproquest_doaj_%3E2621279539%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621279539&rft_id=info:pmid/&rfr_iscdi=true