Loading…
Computational Analysis of Active and Passive Flow Control for Backward Facing Step
The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the...
Saved in:
Published in: | Computation 2022-01, Vol.10 (1), p.12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3 |
container_end_page | |
container_issue | 1 |
container_start_page | 12 |
container_title | Computation |
container_volume | 10 |
creator | Moulinos, Iosif Manopoulos, Christos Tsangaris, Sokrates |
description | The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs. |
doi_str_mv | 10.3390/computation10010012 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_722c0e1627a540cfb7522fe0eb1bbd15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_722c0e1627a540cfb7522fe0eb1bbd15</doaj_id><sourcerecordid>2621279539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</originalsourceid><addsrcrecordid>eNptUUtLw0AQDqJgqf0FXhY8V_eV7u6xBquFguLjvEz2UVLTbNxNlf57EyvqwWGY5zffwEyWnRN8yZjCVyZs210HXRUagvGg9CgbUSzUlBEljv_Ep9kkpQ3uRREmKR5lj8XvNNRo3pt9qhIKHs1NV707BI1FD5DSEC_q8IGK0HQx1MiHiK7BvH5AtGgBpmrW6Klz7Vl24qFObvLtx9nL4ua5uJuu7m-XxXw1NUzKbgpSAsPcKsFzzIeME0a8kV5w6UtSCqAMz4SVpVWu71nBifBcgQfCqGXjbHngtQE2uo3VFuJeB6j0VyHEtYbYVaZ2WlBqsCMzKiDn2PhS5JR6h12_prQk77kuDlxtDG87lzq9CbvYHyNpOqOECpUz1aPYAWViSCk6_7OVYD38Qv_zC_YJ44F-mA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621279539</pqid></control><display><type>article</type><title>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</title><source>Publicly Available Content Database</source><creator>Moulinos, Iosif ; Manopoulos, Christos ; Tsangaris, Sokrates</creator><creatorcontrib>Moulinos, Iosif ; Manopoulos, Christos ; Tsangaris, Sokrates</creatorcontrib><description>The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.</description><identifier>ISSN: 2079-3197</identifier><identifier>EISSN: 2079-3197</identifier><identifier>DOI: 10.3390/computation10010012</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>active and passive flow control ; Active control ; Amplitudes ; backward facing step ; Backward facing steps ; Boundary conditions ; curvilinear immersed boundary method ; elastic membrane ; External pressure ; Finite volume method ; Flow control ; Flow separation ; Flow velocity ; Fluid flow ; Fluid-structure interaction ; Membranes ; oscillating surface ; Reversed flow ; Reynolds number ; Separation ; Unsteady flow ; Wall flow</subject><ispartof>Computation, 2022-01, Vol.10 (1), p.12</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</citedby><cites>FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</cites><orcidid>0000-0002-3560-4221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621279539/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621279539?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Moulinos, Iosif</creatorcontrib><creatorcontrib>Manopoulos, Christos</creatorcontrib><creatorcontrib>Tsangaris, Sokrates</creatorcontrib><title>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</title><title>Computation</title><description>The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.</description><subject>active and passive flow control</subject><subject>Active control</subject><subject>Amplitudes</subject><subject>backward facing step</subject><subject>Backward facing steps</subject><subject>Boundary conditions</subject><subject>curvilinear immersed boundary method</subject><subject>elastic membrane</subject><subject>External pressure</subject><subject>Finite volume method</subject><subject>Flow control</subject><subject>Flow separation</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Membranes</subject><subject>oscillating surface</subject><subject>Reversed flow</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Unsteady flow</subject><subject>Wall flow</subject><issn>2079-3197</issn><issn>2079-3197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUUtLw0AQDqJgqf0FXhY8V_eV7u6xBquFguLjvEz2UVLTbNxNlf57EyvqwWGY5zffwEyWnRN8yZjCVyZs210HXRUagvGg9CgbUSzUlBEljv_Ep9kkpQ3uRREmKR5lj8XvNNRo3pt9qhIKHs1NV707BI1FD5DSEC_q8IGK0HQx1MiHiK7BvH5AtGgBpmrW6Klz7Vl24qFObvLtx9nL4ua5uJuu7m-XxXw1NUzKbgpSAsPcKsFzzIeME0a8kV5w6UtSCqAMz4SVpVWu71nBifBcgQfCqGXjbHngtQE2uo3VFuJeB6j0VyHEtYbYVaZ2WlBqsCMzKiDn2PhS5JR6h12_prQk77kuDlxtDG87lzq9CbvYHyNpOqOECpUz1aPYAWViSCk6_7OVYD38Qv_zC_YJ44F-mA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Moulinos, Iosif</creator><creator>Manopoulos, Christos</creator><creator>Tsangaris, Sokrates</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3560-4221</orcidid></search><sort><creationdate>20220101</creationdate><title>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</title><author>Moulinos, Iosif ; Manopoulos, Christos ; Tsangaris, Sokrates</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>active and passive flow control</topic><topic>Active control</topic><topic>Amplitudes</topic><topic>backward facing step</topic><topic>Backward facing steps</topic><topic>Boundary conditions</topic><topic>curvilinear immersed boundary method</topic><topic>elastic membrane</topic><topic>External pressure</topic><topic>Finite volume method</topic><topic>Flow control</topic><topic>Flow separation</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Membranes</topic><topic>oscillating surface</topic><topic>Reversed flow</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Unsteady flow</topic><topic>Wall flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulinos, Iosif</creatorcontrib><creatorcontrib>Manopoulos, Christos</creatorcontrib><creatorcontrib>Tsangaris, Sokrates</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulinos, Iosif</au><au>Manopoulos, Christos</au><au>Tsangaris, Sokrates</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Analysis of Active and Passive Flow Control for Backward Facing Step</atitle><jtitle>Computation</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>12</spage><pages>12-</pages><issn>2079-3197</issn><eissn>2079-3197</eissn><abstract>The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/computation10010012</doi><orcidid>https://orcid.org/0000-0002-3560-4221</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-3197 |
ispartof | Computation, 2022-01, Vol.10 (1), p.12 |
issn | 2079-3197 2079-3197 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_722c0e1627a540cfb7522fe0eb1bbd15 |
source | Publicly Available Content Database |
subjects | active and passive flow control Active control Amplitudes backward facing step Backward facing steps Boundary conditions curvilinear immersed boundary method elastic membrane External pressure Finite volume method Flow control Flow separation Flow velocity Fluid flow Fluid-structure interaction Membranes oscillating surface Reversed flow Reynolds number Separation Unsteady flow Wall flow |
title | Computational Analysis of Active and Passive Flow Control for Backward Facing Step |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Analysis%20of%20Active%20and%20Passive%20Flow%20Control%20for%20Backward%20Facing%20Step&rft.jtitle=Computation&rft.au=Moulinos,%20Iosif&rft.date=2022-01-01&rft.volume=10&rft.issue=1&rft.spage=12&rft.pages=12-&rft.issn=2079-3197&rft.eissn=2079-3197&rft_id=info:doi/10.3390/computation10010012&rft_dat=%3Cproquest_doaj_%3E2621279539%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-a88a304d974504a88a4131fc8f748fb1b7a23067d8bd9e413d7417f49afa132d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621279539&rft_id=info:pmid/&rfr_iscdi=true |