Loading…
Approaching soft X-ray wavelengths in nanomagnet-based microwave technology
Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated o...
Saved in:
Published in: | Nature communications 2016-04, Vol.7 (1), p.11255-11255, Article 11255 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic.
Integrating spin waves with microwave circuits is promising for microwave nanoelectronics. Here, Yu
et al
. demonstrate a reconfigurable microwave-to-magnon transducer by covering yttrium iron garnet with small arrays of tailored magnetic nanodisks, which transmits microwave signals via sub-100-nanometer wavelength spin waves. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms11255 |