Loading…

GRACE—Gravity Data for Understanding the Deep Earth’s Interior

While the main causes of the temporal gravity variations observed by the Gravity Recovery and Climate Experiment (GRACE) space mission result from water mass redistributions occurring at the surface of the Earth in response to climatic and anthropogenic forces (e.g., changes in land hydrology, ocean...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-12, Vol.12 (24), p.4186
Main Authors: Mandea, Mioara, Dehant, Véronique, Cazenave, Anny
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While the main causes of the temporal gravity variations observed by the Gravity Recovery and Climate Experiment (GRACE) space mission result from water mass redistributions occurring at the surface of the Earth in response to climatic and anthropogenic forces (e.g., changes in land hydrology, ocean mass, and mass of glaciers and ice sheets), solid Earth’s mass redistributions were also recorded by these observations. This is the case, in particular, for the glacial isostatic adjustment (GIA) or the viscous response of the mantle to the last deglaciation. However, it has only recently been shown that the gravity data also contain the signature of flows inside the outer core and their effects on the core–mantle boundary (CMB). Detecting deep Earth’s processes in GRACE observations offers an exciting opportunity to provide additional insight into the dynamics of the core–mantle interface. Here, we present one aspect of the GRACEFUL (GRavimetry, mAgnetism and CorE Flow) project, i.e., the possibility to use gravity field data for understanding the dynamic processes inside the fluid core and core–mantle boundary of the Earth, beside that offered by the geomagnetic field variations.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12244186