Loading…

Effect of Altitude Gradients on the Spatial Distribution Mechanism of Soil Bacteria in Temperate Deciduous Broad-Leaved Forests

Soil bacteria are an important part of the forest ecosystem, and they play a crucial role in driving energy flow and material circulation. Currently, many uncertainties remain about how the composition and distribution patterns of bacterial communities change along altitude gradients, especially in...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) 2024-05, Vol.12 (6), p.1034
Main Authors: Liu, Wenxin, Guo, Shengqian, Zhang, Huiping, Chen, Yun, Shao, Yizhen, Yuan, Zhiliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil bacteria are an important part of the forest ecosystem, and they play a crucial role in driving energy flow and material circulation. Currently, many uncertainties remain about how the composition and distribution patterns of bacterial communities change along altitude gradients, especially in forest ecosystems with strong altitude gradients in climate, vegetation, and soil properties. Based on dynamic site monitoring of the Baiyun Mountain Forest National Park (33°38'-33°42' N, 111°47'-111°51' E), this study used Illumina technology to sequence 120 soil samples at the site and explored the spatial distribution mechanisms and ecological processes of soil bacteria under different altitude gradients. Our results showed that the composition of soil bacterial communities varied significantly between different altitude gradients, affecting soil bacterial community building by influencing the balance between deterministic and stochastic processes; in addition, bacterial communities exhibited broader ecological niche widths and a greater degree of stochasticity under low-altitude conditions, implying that, at lower altitudes, community assembly is predominantly influenced by stochastic processes. Light was the dominant environmental factor that influenced variation in the entire bacterial community as well as other taxa across different altitude gradients. Moreover, changes in the altitude gradient could cause significant differences in the diversity and community composition of bacterial taxa. Our study revealed significant differences in bacterial community composition in the soil under different altitude gradients. The bacterial communities at low elevation gradients were mainly controlled by stochasticity processes, and bacterial community assembly was strongly influenced by deterministic processes at middle altitudes. Furthermore, light was an important environmental factor that affects differences. This study revealed that the change of altitude gradient had an important effect on the development of the soil bacterial community and provided a theoretical basis for the sustainable development and management of soil bacteria.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms12061034