Loading…
A mathematical model of Bacteroides thetaiotaomicron, Methanobrevibacter smithii, and Eubacterium rectale interactions in the human gut
The human gut microbiota is a complex ecosystem that affects a range of human physiology. In order to explore the dynamics of the human gut microbiota, we used a system of ordinary differential equations to model mathematically the biomass of three microorganism populations: Bacteroides thetaiotaomi...
Saved in:
Published in: | Scientific reports 2023-12, Vol.13 (1), p.21192-21192, Article 21192 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The human gut microbiota is a complex ecosystem that affects a range of human physiology. In order to explore the dynamics of the human gut microbiota, we used a system of ordinary differential equations to model mathematically the biomass of three microorganism populations:
Bacteroides thetaiotaomicron
,
Eubacterium rectale
, and
Methanobrevibacter smithii
. Additionally, we modeled the concentrations of relevant nutrients necessary to sustain these populations over time. Our model highlights the interactions and the competition among these three species. These three microorganisms were specifically chosen due to the system’s end product, butyrate, which is a short chain fatty acid that aids in developing and maintaining the intestinal barrier in the human gut. The basis of our mathematical model assumes the gut is structured such that bacteria and nutrients exit the gut at a rate proportional to its volume, the rate of volumetric flow, and the biomass or concentration of the particular population or nutrient. We performed global sensitivity analyses using Sobol’ sensitivities to estimate the relative importance of model parameters on simulation results. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-48524-4 |