Loading…
Learning generalizable AI models for multi-center histopathology image classification
Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue prepar...
Saved in:
Published in: | NPJ precision oncology 2024-07, Vol.8 (1), p.151-18, Article 151 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 151 |
container_title | NPJ precision oncology |
container_volume | 8 |
creator | Asadi-Aghbolaghi, Maryam Darbandsari, Amirali Zhang, Allen Contreras-Sanz, Alberto Boschman, Jeffrey Ahmadvand, Pouya Köbel, Martin Farnell, David Huntsman, David G. Churg, Andrew Black, Peter C. Wang, Gang Gilks, C. Blake Farahani, Hossein Bashashati, Ali |
description | Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets. |
doi_str_mv | 10.1038/s41698-024-00652-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_72c28cf50b92406fb499cf977e8ae969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_72c28cf50b92406fb499cf977e8ae969</doaj_id><sourcerecordid>3082835244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE7AdP1eoqniMNBKbIrGzHOc645ETD3aC1P56PJNSWhasbPkefz73-lTVa4zeY9TKD5lirmSDCG0Q4ow09Fl1TlolGsHlj-eP9mfVZc57hBCWDBPOX1ZnrUJtgaDz6vsWTJr8NNQDTJBM8HemC1Bfbeox9hBy7WKqxyXMvrEwzZDqnc9zPJh5F0Mcbms_mgFqG0zO3nlrZh-nV9ULZ0KGy_v1orr5_Onm-muz_fZlc321bSwlZG56xTjCCjhxxZ3BpqPAqWGIWEGM6oRR1ErMaK8M7R30tAOsMHcMC4Zle1FtVmwfzV4fUrGSbnU0Xp8OYhq0SbO3AbQglkjrGOoUoYi7jiplnRICpAHFVWF9XFmHpRuhP_ZapvEE-rQy-Z0e4i-NMRGYt6IQ3t0TUvy5QJ716LOFEMwEccm6RZLIlhFKi_TtP9J9XNJURnVSCYwEO1oiq8qmmHMC9-AGI30MgV5DoEsI9CkE-oh-87iPhyt_vrwI2lWQS2kaIP19-z_Y32KevVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082710759</pqid></control><display><type>article</type><title>Learning generalizable AI models for multi-center histopathology image classification</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Alma/SFX Local Collection</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Asadi-Aghbolaghi, Maryam ; Darbandsari, Amirali ; Zhang, Allen ; Contreras-Sanz, Alberto ; Boschman, Jeffrey ; Ahmadvand, Pouya ; Köbel, Martin ; Farnell, David ; Huntsman, David G. ; Churg, Andrew ; Black, Peter C. ; Wang, Gang ; Gilks, C. Blake ; Farahani, Hossein ; Bashashati, Ali</creator><creatorcontrib>Asadi-Aghbolaghi, Maryam ; Darbandsari, Amirali ; Zhang, Allen ; Contreras-Sanz, Alberto ; Boschman, Jeffrey ; Ahmadvand, Pouya ; Köbel, Martin ; Farnell, David ; Huntsman, David G. ; Churg, Andrew ; Black, Peter C. ; Wang, Gang ; Gilks, C. Blake ; Farahani, Hossein ; Bashashati, Ali</creatorcontrib><description>Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.</description><identifier>ISSN: 2397-768X</identifier><identifier>EISSN: 2397-768X</identifier><identifier>DOI: 10.1038/s41698-024-00652-4</identifier><identifier>PMID: 39030380</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/2321 ; 692/53/2421 ; Cancer ; Cancer Research ; Deep learning ; Fourier transforms ; Gene Therapy ; Histopathology ; Human Genetics ; Internal Medicine ; Medicine ; Medicine & Public Health ; Oncology</subject><ispartof>NPJ precision oncology, 2024-07, Vol.8 (1), p.151-18, Article 151</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183</cites><orcidid>0009-0004-9315-6238 ; 0000-0002-9503-1875 ; 0000-0002-2919-7068 ; 0000-0002-0275-512X ; 0000-0002-0225-4173 ; 0000-0002-4212-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271637/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3082710759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39030380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asadi-Aghbolaghi, Maryam</creatorcontrib><creatorcontrib>Darbandsari, Amirali</creatorcontrib><creatorcontrib>Zhang, Allen</creatorcontrib><creatorcontrib>Contreras-Sanz, Alberto</creatorcontrib><creatorcontrib>Boschman, Jeffrey</creatorcontrib><creatorcontrib>Ahmadvand, Pouya</creatorcontrib><creatorcontrib>Köbel, Martin</creatorcontrib><creatorcontrib>Farnell, David</creatorcontrib><creatorcontrib>Huntsman, David G.</creatorcontrib><creatorcontrib>Churg, Andrew</creatorcontrib><creatorcontrib>Black, Peter C.</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gilks, C. Blake</creatorcontrib><creatorcontrib>Farahani, Hossein</creatorcontrib><creatorcontrib>Bashashati, Ali</creatorcontrib><title>Learning generalizable AI models for multi-center histopathology image classification</title><title>NPJ precision oncology</title><addtitle>npj Precis. Onc</addtitle><addtitle>NPJ Precis Oncol</addtitle><description>Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.</description><subject>631/67/2321</subject><subject>692/53/2421</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Deep learning</subject><subject>Fourier transforms</subject><subject>Gene Therapy</subject><subject>Histopathology</subject><subject>Human Genetics</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Oncology</subject><issn>2397-768X</issn><issn>2397-768X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE7AdP1eoqniMNBKbIrGzHOc645ETD3aC1P56PJNSWhasbPkefz73-lTVa4zeY9TKD5lirmSDCG0Q4ow09Fl1TlolGsHlj-eP9mfVZc57hBCWDBPOX1ZnrUJtgaDz6vsWTJr8NNQDTJBM8HemC1Bfbeox9hBy7WKqxyXMvrEwzZDqnc9zPJh5F0Mcbms_mgFqG0zO3nlrZh-nV9ULZ0KGy_v1orr5_Onm-muz_fZlc321bSwlZG56xTjCCjhxxZ3BpqPAqWGIWEGM6oRR1ErMaK8M7R30tAOsMHcMC4Zle1FtVmwfzV4fUrGSbnU0Xp8OYhq0SbO3AbQglkjrGOoUoYi7jiplnRICpAHFVWF9XFmHpRuhP_ZapvEE-rQy-Z0e4i-NMRGYt6IQ3t0TUvy5QJ716LOFEMwEccm6RZLIlhFKi_TtP9J9XNJURnVSCYwEO1oiq8qmmHMC9-AGI30MgV5DoEsI9CkE-oh-87iPhyt_vrwI2lWQS2kaIP19-z_Y32KevVA</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Asadi-Aghbolaghi, Maryam</creator><creator>Darbandsari, Amirali</creator><creator>Zhang, Allen</creator><creator>Contreras-Sanz, Alberto</creator><creator>Boschman, Jeffrey</creator><creator>Ahmadvand, Pouya</creator><creator>Köbel, Martin</creator><creator>Farnell, David</creator><creator>Huntsman, David G.</creator><creator>Churg, Andrew</creator><creator>Black, Peter C.</creator><creator>Wang, Gang</creator><creator>Gilks, C. Blake</creator><creator>Farahani, Hossein</creator><creator>Bashashati, Ali</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-9315-6238</orcidid><orcidid>https://orcid.org/0000-0002-9503-1875</orcidid><orcidid>https://orcid.org/0000-0002-2919-7068</orcidid><orcidid>https://orcid.org/0000-0002-0275-512X</orcidid><orcidid>https://orcid.org/0000-0002-0225-4173</orcidid><orcidid>https://orcid.org/0000-0002-4212-7224</orcidid></search><sort><creationdate>20240719</creationdate><title>Learning generalizable AI models for multi-center histopathology image classification</title><author>Asadi-Aghbolaghi, Maryam ; Darbandsari, Amirali ; Zhang, Allen ; Contreras-Sanz, Alberto ; Boschman, Jeffrey ; Ahmadvand, Pouya ; Köbel, Martin ; Farnell, David ; Huntsman, David G. ; Churg, Andrew ; Black, Peter C. ; Wang, Gang ; Gilks, C. Blake ; Farahani, Hossein ; Bashashati, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/67/2321</topic><topic>692/53/2421</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Deep learning</topic><topic>Fourier transforms</topic><topic>Gene Therapy</topic><topic>Histopathology</topic><topic>Human Genetics</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi-Aghbolaghi, Maryam</creatorcontrib><creatorcontrib>Darbandsari, Amirali</creatorcontrib><creatorcontrib>Zhang, Allen</creatorcontrib><creatorcontrib>Contreras-Sanz, Alberto</creatorcontrib><creatorcontrib>Boschman, Jeffrey</creatorcontrib><creatorcontrib>Ahmadvand, Pouya</creatorcontrib><creatorcontrib>Köbel, Martin</creatorcontrib><creatorcontrib>Farnell, David</creatorcontrib><creatorcontrib>Huntsman, David G.</creatorcontrib><creatorcontrib>Churg, Andrew</creatorcontrib><creatorcontrib>Black, Peter C.</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gilks, C. Blake</creatorcontrib><creatorcontrib>Farahani, Hossein</creatorcontrib><creatorcontrib>Bashashati, Ali</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NPJ precision oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asadi-Aghbolaghi, Maryam</au><au>Darbandsari, Amirali</au><au>Zhang, Allen</au><au>Contreras-Sanz, Alberto</au><au>Boschman, Jeffrey</au><au>Ahmadvand, Pouya</au><au>Köbel, Martin</au><au>Farnell, David</au><au>Huntsman, David G.</au><au>Churg, Andrew</au><au>Black, Peter C.</au><au>Wang, Gang</au><au>Gilks, C. Blake</au><au>Farahani, Hossein</au><au>Bashashati, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning generalizable AI models for multi-center histopathology image classification</atitle><jtitle>NPJ precision oncology</jtitle><stitle>npj Precis. Onc</stitle><addtitle>NPJ Precis Oncol</addtitle><date>2024-07-19</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>151</spage><epage>18</epage><pages>151-18</pages><artnum>151</artnum><issn>2397-768X</issn><eissn>2397-768X</eissn><abstract>Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39030380</pmid><doi>10.1038/s41698-024-00652-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0004-9315-6238</orcidid><orcidid>https://orcid.org/0000-0002-9503-1875</orcidid><orcidid>https://orcid.org/0000-0002-2919-7068</orcidid><orcidid>https://orcid.org/0000-0002-0275-512X</orcidid><orcidid>https://orcid.org/0000-0002-0225-4173</orcidid><orcidid>https://orcid.org/0000-0002-4212-7224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-768X |
ispartof | NPJ precision oncology, 2024-07, Vol.8 (1), p.151-18, Article 151 |
issn | 2397-768X 2397-768X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_72c28cf50b92406fb499cf977e8ae969 |
source | Open Access: PubMed Central; Publicly Available Content Database; Alma/SFX Local Collection; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/67/2321 692/53/2421 Cancer Cancer Research Deep learning Fourier transforms Gene Therapy Histopathology Human Genetics Internal Medicine Medicine Medicine & Public Health Oncology |
title | Learning generalizable AI models for multi-center histopathology image classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20generalizable%20AI%20models%20for%20multi-center%20histopathology%20image%20classification&rft.jtitle=NPJ%20precision%20oncology&rft.au=Asadi-Aghbolaghi,%20Maryam&rft.date=2024-07-19&rft.volume=8&rft.issue=1&rft.spage=151&rft.epage=18&rft.pages=151-18&rft.artnum=151&rft.issn=2397-768X&rft.eissn=2397-768X&rft_id=info:doi/10.1038/s41698-024-00652-4&rft_dat=%3Cproquest_doaj_%3E3082835244%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082710759&rft_id=info:pmid/39030380&rfr_iscdi=true |