Loading…

Learning generalizable AI models for multi-center histopathology image classification

Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue prepar...

Full description

Saved in:
Bibliographic Details
Published in:NPJ precision oncology 2024-07, Vol.8 (1), p.151-18, Article 151
Main Authors: Asadi-Aghbolaghi, Maryam, Darbandsari, Amirali, Zhang, Allen, Contreras-Sanz, Alberto, Boschman, Jeffrey, Ahmadvand, Pouya, Köbel, Martin, Farnell, David, Huntsman, David G., Churg, Andrew, Black, Peter C., Wang, Gang, Gilks, C. Blake, Farahani, Hossein, Bashashati, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183
container_end_page 18
container_issue 1
container_start_page 151
container_title NPJ precision oncology
container_volume 8
creator Asadi-Aghbolaghi, Maryam
Darbandsari, Amirali
Zhang, Allen
Contreras-Sanz, Alberto
Boschman, Jeffrey
Ahmadvand, Pouya
Köbel, Martin
Farnell, David
Huntsman, David G.
Churg, Andrew
Black, Peter C.
Wang, Gang
Gilks, C. Blake
Farahani, Hossein
Bashashati, Ali
description Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.
doi_str_mv 10.1038/s41698-024-00652-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_72c28cf50b92406fb499cf977e8ae969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_72c28cf50b92406fb499cf977e8ae969</doaj_id><sourcerecordid>3082835244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE7AdP1eoqniMNBKbIrGzHOc645ETD3aC1P56PJNSWhasbPkefz73-lTVa4zeY9TKD5lirmSDCG0Q4ow09Fl1TlolGsHlj-eP9mfVZc57hBCWDBPOX1ZnrUJtgaDz6vsWTJr8NNQDTJBM8HemC1Bfbeox9hBy7WKqxyXMvrEwzZDqnc9zPJh5F0Mcbms_mgFqG0zO3nlrZh-nV9ULZ0KGy_v1orr5_Onm-muz_fZlc321bSwlZG56xTjCCjhxxZ3BpqPAqWGIWEGM6oRR1ErMaK8M7R30tAOsMHcMC4Zle1FtVmwfzV4fUrGSbnU0Xp8OYhq0SbO3AbQglkjrGOoUoYi7jiplnRICpAHFVWF9XFmHpRuhP_ZapvEE-rQy-Z0e4i-NMRGYt6IQ3t0TUvy5QJ716LOFEMwEccm6RZLIlhFKi_TtP9J9XNJURnVSCYwEO1oiq8qmmHMC9-AGI30MgV5DoEsI9CkE-oh-87iPhyt_vrwI2lWQS2kaIP19-z_Y32KevVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082710759</pqid></control><display><type>article</type><title>Learning generalizable AI models for multi-center histopathology image classification</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Alma/SFX Local Collection</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Asadi-Aghbolaghi, Maryam ; Darbandsari, Amirali ; Zhang, Allen ; Contreras-Sanz, Alberto ; Boschman, Jeffrey ; Ahmadvand, Pouya ; Köbel, Martin ; Farnell, David ; Huntsman, David G. ; Churg, Andrew ; Black, Peter C. ; Wang, Gang ; Gilks, C. Blake ; Farahani, Hossein ; Bashashati, Ali</creator><creatorcontrib>Asadi-Aghbolaghi, Maryam ; Darbandsari, Amirali ; Zhang, Allen ; Contreras-Sanz, Alberto ; Boschman, Jeffrey ; Ahmadvand, Pouya ; Köbel, Martin ; Farnell, David ; Huntsman, David G. ; Churg, Andrew ; Black, Peter C. ; Wang, Gang ; Gilks, C. Blake ; Farahani, Hossein ; Bashashati, Ali</creatorcontrib><description>Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.</description><identifier>ISSN: 2397-768X</identifier><identifier>EISSN: 2397-768X</identifier><identifier>DOI: 10.1038/s41698-024-00652-4</identifier><identifier>PMID: 39030380</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/2321 ; 692/53/2421 ; Cancer ; Cancer Research ; Deep learning ; Fourier transforms ; Gene Therapy ; Histopathology ; Human Genetics ; Internal Medicine ; Medicine ; Medicine &amp; Public Health ; Oncology</subject><ispartof>NPJ precision oncology, 2024-07, Vol.8 (1), p.151-18, Article 151</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183</cites><orcidid>0009-0004-9315-6238 ; 0000-0002-9503-1875 ; 0000-0002-2919-7068 ; 0000-0002-0275-512X ; 0000-0002-0225-4173 ; 0000-0002-4212-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271637/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3082710759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39030380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asadi-Aghbolaghi, Maryam</creatorcontrib><creatorcontrib>Darbandsari, Amirali</creatorcontrib><creatorcontrib>Zhang, Allen</creatorcontrib><creatorcontrib>Contreras-Sanz, Alberto</creatorcontrib><creatorcontrib>Boschman, Jeffrey</creatorcontrib><creatorcontrib>Ahmadvand, Pouya</creatorcontrib><creatorcontrib>Köbel, Martin</creatorcontrib><creatorcontrib>Farnell, David</creatorcontrib><creatorcontrib>Huntsman, David G.</creatorcontrib><creatorcontrib>Churg, Andrew</creatorcontrib><creatorcontrib>Black, Peter C.</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gilks, C. Blake</creatorcontrib><creatorcontrib>Farahani, Hossein</creatorcontrib><creatorcontrib>Bashashati, Ali</creatorcontrib><title>Learning generalizable AI models for multi-center histopathology image classification</title><title>NPJ precision oncology</title><addtitle>npj Precis. Onc</addtitle><addtitle>NPJ Precis Oncol</addtitle><description>Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.</description><subject>631/67/2321</subject><subject>692/53/2421</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Deep learning</subject><subject>Fourier transforms</subject><subject>Gene Therapy</subject><subject>Histopathology</subject><subject>Human Genetics</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><issn>2397-768X</issn><issn>2397-768X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE7AdP1eoqniMNBKbIrGzHOc645ETD3aC1P56PJNSWhasbPkefz73-lTVa4zeY9TKD5lirmSDCG0Q4ow09Fl1TlolGsHlj-eP9mfVZc57hBCWDBPOX1ZnrUJtgaDz6vsWTJr8NNQDTJBM8HemC1Bfbeox9hBy7WKqxyXMvrEwzZDqnc9zPJh5F0Mcbms_mgFqG0zO3nlrZh-nV9ULZ0KGy_v1orr5_Onm-muz_fZlc321bSwlZG56xTjCCjhxxZ3BpqPAqWGIWEGM6oRR1ErMaK8M7R30tAOsMHcMC4Zle1FtVmwfzV4fUrGSbnU0Xp8OYhq0SbO3AbQglkjrGOoUoYi7jiplnRICpAHFVWF9XFmHpRuhP_ZapvEE-rQy-Z0e4i-NMRGYt6IQ3t0TUvy5QJ716LOFEMwEccm6RZLIlhFKi_TtP9J9XNJURnVSCYwEO1oiq8qmmHMC9-AGI30MgV5DoEsI9CkE-oh-87iPhyt_vrwI2lWQS2kaIP19-z_Y32KevVA</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Asadi-Aghbolaghi, Maryam</creator><creator>Darbandsari, Amirali</creator><creator>Zhang, Allen</creator><creator>Contreras-Sanz, Alberto</creator><creator>Boschman, Jeffrey</creator><creator>Ahmadvand, Pouya</creator><creator>Köbel, Martin</creator><creator>Farnell, David</creator><creator>Huntsman, David G.</creator><creator>Churg, Andrew</creator><creator>Black, Peter C.</creator><creator>Wang, Gang</creator><creator>Gilks, C. Blake</creator><creator>Farahani, Hossein</creator><creator>Bashashati, Ali</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-9315-6238</orcidid><orcidid>https://orcid.org/0000-0002-9503-1875</orcidid><orcidid>https://orcid.org/0000-0002-2919-7068</orcidid><orcidid>https://orcid.org/0000-0002-0275-512X</orcidid><orcidid>https://orcid.org/0000-0002-0225-4173</orcidid><orcidid>https://orcid.org/0000-0002-4212-7224</orcidid></search><sort><creationdate>20240719</creationdate><title>Learning generalizable AI models for multi-center histopathology image classification</title><author>Asadi-Aghbolaghi, Maryam ; Darbandsari, Amirali ; Zhang, Allen ; Contreras-Sanz, Alberto ; Boschman, Jeffrey ; Ahmadvand, Pouya ; Köbel, Martin ; Farnell, David ; Huntsman, David G. ; Churg, Andrew ; Black, Peter C. ; Wang, Gang ; Gilks, C. Blake ; Farahani, Hossein ; Bashashati, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/67/2321</topic><topic>692/53/2421</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Deep learning</topic><topic>Fourier transforms</topic><topic>Gene Therapy</topic><topic>Histopathology</topic><topic>Human Genetics</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi-Aghbolaghi, Maryam</creatorcontrib><creatorcontrib>Darbandsari, Amirali</creatorcontrib><creatorcontrib>Zhang, Allen</creatorcontrib><creatorcontrib>Contreras-Sanz, Alberto</creatorcontrib><creatorcontrib>Boschman, Jeffrey</creatorcontrib><creatorcontrib>Ahmadvand, Pouya</creatorcontrib><creatorcontrib>Köbel, Martin</creatorcontrib><creatorcontrib>Farnell, David</creatorcontrib><creatorcontrib>Huntsman, David G.</creatorcontrib><creatorcontrib>Churg, Andrew</creatorcontrib><creatorcontrib>Black, Peter C.</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gilks, C. Blake</creatorcontrib><creatorcontrib>Farahani, Hossein</creatorcontrib><creatorcontrib>Bashashati, Ali</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NPJ precision oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asadi-Aghbolaghi, Maryam</au><au>Darbandsari, Amirali</au><au>Zhang, Allen</au><au>Contreras-Sanz, Alberto</au><au>Boschman, Jeffrey</au><au>Ahmadvand, Pouya</au><au>Köbel, Martin</au><au>Farnell, David</au><au>Huntsman, David G.</au><au>Churg, Andrew</au><au>Black, Peter C.</au><au>Wang, Gang</au><au>Gilks, C. Blake</au><au>Farahani, Hossein</au><au>Bashashati, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning generalizable AI models for multi-center histopathology image classification</atitle><jtitle>NPJ precision oncology</jtitle><stitle>npj Precis. Onc</stitle><addtitle>NPJ Precis Oncol</addtitle><date>2024-07-19</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>151</spage><epage>18</epage><pages>151-18</pages><artnum>151</artnum><issn>2397-768X</issn><eissn>2397-768X</eissn><abstract>Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use. Several techniques, including the use of grayscale images, color normalization techniques, and Adversarial Domain Adaptation (ADA) have been suggested to generalize deep learning algorithms, but there are limitations to their effectiveness and discriminability. Convolutional Neural Networks (CNNs) exhibit higher sensitivity to variations in the amplitude spectrum, whereas humans predominantly rely on phase-related components for object recognition. As such, we propose Adversarial fourIer-based Domain Adaptation (AIDA) which applies the advantages of a Fourier transform in adversarial domain adaptation. We conducted a comprehensive examination of subtype classification tasks in four cancers, incorporating cases from multiple medical centers. Specifically, the datasets included multi-center data for 1113 ovarian cancer cases, 247 pleural cancer cases, 422 bladder cancer cases, and 482 breast cancer cases. Our proposed approach significantly improved performance, achieving superior classification results in the target domain, surpassing the baseline, color augmentation and normalization techniques, and ADA. Furthermore, extensive pathologist reviews suggested that our proposed approach, AIDA, successfully identifies known histotype-specific features. This superior performance highlights AIDA’s potential in addressing generalization challenges in deep learning models for multi-center histopathology datasets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39030380</pmid><doi>10.1038/s41698-024-00652-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0004-9315-6238</orcidid><orcidid>https://orcid.org/0000-0002-9503-1875</orcidid><orcidid>https://orcid.org/0000-0002-2919-7068</orcidid><orcidid>https://orcid.org/0000-0002-0275-512X</orcidid><orcidid>https://orcid.org/0000-0002-0225-4173</orcidid><orcidid>https://orcid.org/0000-0002-4212-7224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-768X
ispartof NPJ precision oncology, 2024-07, Vol.8 (1), p.151-18, Article 151
issn 2397-768X
2397-768X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_72c28cf50b92406fb499cf977e8ae969
source Open Access: PubMed Central; Publicly Available Content Database; Alma/SFX Local Collection; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/67/2321
692/53/2421
Cancer
Cancer Research
Deep learning
Fourier transforms
Gene Therapy
Histopathology
Human Genetics
Internal Medicine
Medicine
Medicine & Public Health
Oncology
title Learning generalizable AI models for multi-center histopathology image classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20generalizable%20AI%20models%20for%20multi-center%20histopathology%20image%20classification&rft.jtitle=NPJ%20precision%20oncology&rft.au=Asadi-Aghbolaghi,%20Maryam&rft.date=2024-07-19&rft.volume=8&rft.issue=1&rft.spage=151&rft.epage=18&rft.pages=151-18&rft.artnum=151&rft.issn=2397-768X&rft.eissn=2397-768X&rft_id=info:doi/10.1038/s41698-024-00652-4&rft_dat=%3Cproquest_doaj_%3E3082835244%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-d956019e62f001a1ab4e64a502c72a9b7a94c8154d9a4dfed4be1916f5175183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082710759&rft_id=info:pmid/39030380&rfr_iscdi=true