Loading…

Practical Approbation of Thermodynamic Criteria for the Consolidation of Bimetallic and Functionally Gradient Materials

This study concerns the key problem of determining the conditions for the consolidation or fracture of bimetallic compounds and high-gradient materials with different coefficients of thermal expansion. The well-known approach to determining the strength is based on the assessment of the critical ene...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2021-12, Vol.11 (12), p.1960
Main Authors: Khaimovich, Alexander, Erisov, Yaroslav, Agapovichev, Anton, Shishkovsky, Igor, Smelov, Vitaliy, Razzhivin, Vasilii
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-28df9c6812e452028af05c305dfd931935a6b3c2dc276a25b077ac214b0000f93
cites cdi_FETCH-LOGICAL-c364t-28df9c6812e452028af05c305dfd931935a6b3c2dc276a25b077ac214b0000f93
container_end_page
container_issue 12
container_start_page 1960
container_title Metals (Basel )
container_volume 11
creator Khaimovich, Alexander
Erisov, Yaroslav
Agapovichev, Anton
Shishkovsky, Igor
Smelov, Vitaliy
Razzhivin, Vasilii
description This study concerns the key problem of determining the conditions for the consolidation or fracture of bimetallic compounds and high-gradient materials with different coefficients of thermal expansion. The well-known approach to determining the strength is based on the assessment of the critical energy release rates during fracture, depending on the conditions of loading (the portion of shear loading). Unfortunately, most of the experimental results cannot be used directly to select suitable fracture toughness criteria before such a connection is made. This especially applies to the region of interphase interaction, when it is required to estimate the internal energy of destruction accumulated during the preparation of the joint in the adhesion layer within the range of 20–50 μm. Hence, criteria for the adhesive consolidation of bimetallic compound layers were obtained on the basis of the thermodynamics of nonequilibrium processes. The analysis of the quality of the joint using the obtained criteria was carried out on the basis of the calculation of isochoric and isobaric heat capacities and coefficients of thermal expansion of multiphase layers. The applicability of the criteria for the qualitative assessment of the adhesion of layers is demonstrated in the example of bimetallic joints of steel 316L—aluminum alloy AlSi10Mg obtained by the SLM method at various fusion modes.
doi_str_mv 10.3390/met11121960
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_72c49c5301ae417cafb7fe903f8839b0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_72c49c5301ae417cafb7fe903f8839b0</doaj_id><sourcerecordid>2612816775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-28df9c6812e452028af05c305dfd931935a6b3c2dc276a25b077ac214b0000f93</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqT35BxY8SnQ_kmz2WIOthYoe6nmZ7IfdkmTrJkX67922UjqXGd483sybSZJ7gp8YE_i5NQMhhBJR4KtkRDHP04xjcn1R3yaTvt_gGCUtsBCj5PczgBqcggZNt9vgaxic75C3aLU2ofV630HrFKqCG0xwgKwPaFgbVPmu943TZ_6LiwtA00QydBrNdp06tCKyR_MA2pluQO9wVGn6u-TGxmQm_3mcfM1eV9VbuvyYL6rpMlWsyIaUltoKVZSEmiynmJZgca4YzrXVghHBcihqpqhWlBdA8xpzDoqSrD6YtIKNk8VJV3vYyG1wLYS99ODkEfDhW0KI_hsjOVWZUDnDBExGuAJbc2sEZrYsmahx1Ho4acU7_exMP8iN34XosJe0ILQkBed5ZD2eWCr4vg_GnqcSLA-PkhePYn_KV4Yo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612816775</pqid></control><display><type>article</type><title>Practical Approbation of Thermodynamic Criteria for the Consolidation of Bimetallic and Functionally Gradient Materials</title><source>Publicly Available Content (ProQuest)</source><creator>Khaimovich, Alexander ; Erisov, Yaroslav ; Agapovichev, Anton ; Shishkovsky, Igor ; Smelov, Vitaliy ; Razzhivin, Vasilii</creator><creatorcontrib>Khaimovich, Alexander ; Erisov, Yaroslav ; Agapovichev, Anton ; Shishkovsky, Igor ; Smelov, Vitaliy ; Razzhivin, Vasilii</creatorcontrib><description>This study concerns the key problem of determining the conditions for the consolidation or fracture of bimetallic compounds and high-gradient materials with different coefficients of thermal expansion. The well-known approach to determining the strength is based on the assessment of the critical energy release rates during fracture, depending on the conditions of loading (the portion of shear loading). Unfortunately, most of the experimental results cannot be used directly to select suitable fracture toughness criteria before such a connection is made. This especially applies to the region of interphase interaction, when it is required to estimate the internal energy of destruction accumulated during the preparation of the joint in the adhesion layer within the range of 20–50 μm. Hence, criteria for the adhesive consolidation of bimetallic compound layers were obtained on the basis of the thermodynamics of nonequilibrium processes. The analysis of the quality of the joint using the obtained criteria was carried out on the basis of the calculation of isochoric and isobaric heat capacities and coefficients of thermal expansion of multiphase layers. The applicability of the criteria for the qualitative assessment of the adhesion of layers is demonstrated in the example of bimetallic joints of steel 316L—aluminum alloy AlSi10Mg obtained by the SLM method at various fusion modes.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11121960</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>adhesive consolidation criteria ; Adhesive joints ; Aluminum base alloys ; Bimetals ; Bond strength ; Composite materials ; Consolidation ; Cracks ; Criteria ; Energy ; Equilibrium ; Failure analysis ; Fracture toughness ; functional bimetallic materials (FBM) ; functional graded (FG) intermetallic structures ; Functionally gradient materials ; Heat ; Interfaces ; Internal energy ; laser-controlled reaction synthesis ; Lasers ; Mechanics ; selective laser melting (SLM) ; Thermal expansion ; thermodynamical approach ; Thermodynamics ; Trends</subject><ispartof>Metals (Basel ), 2021-12, Vol.11 (12), p.1960</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-28df9c6812e452028af05c305dfd931935a6b3c2dc276a25b077ac214b0000f93</citedby><cites>FETCH-LOGICAL-c364t-28df9c6812e452028af05c305dfd931935a6b3c2dc276a25b077ac214b0000f93</cites><orcidid>0000-0001-9556-6290 ; 0000-0001-9750-8211 ; 0000-0002-4404-9020 ; 0000-0001-9735-5307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612816775/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612816775?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Khaimovich, Alexander</creatorcontrib><creatorcontrib>Erisov, Yaroslav</creatorcontrib><creatorcontrib>Agapovichev, Anton</creatorcontrib><creatorcontrib>Shishkovsky, Igor</creatorcontrib><creatorcontrib>Smelov, Vitaliy</creatorcontrib><creatorcontrib>Razzhivin, Vasilii</creatorcontrib><title>Practical Approbation of Thermodynamic Criteria for the Consolidation of Bimetallic and Functionally Gradient Materials</title><title>Metals (Basel )</title><description>This study concerns the key problem of determining the conditions for the consolidation or fracture of bimetallic compounds and high-gradient materials with different coefficients of thermal expansion. The well-known approach to determining the strength is based on the assessment of the critical energy release rates during fracture, depending on the conditions of loading (the portion of shear loading). Unfortunately, most of the experimental results cannot be used directly to select suitable fracture toughness criteria before such a connection is made. This especially applies to the region of interphase interaction, when it is required to estimate the internal energy of destruction accumulated during the preparation of the joint in the adhesion layer within the range of 20–50 μm. Hence, criteria for the adhesive consolidation of bimetallic compound layers were obtained on the basis of the thermodynamics of nonequilibrium processes. The analysis of the quality of the joint using the obtained criteria was carried out on the basis of the calculation of isochoric and isobaric heat capacities and coefficients of thermal expansion of multiphase layers. The applicability of the criteria for the qualitative assessment of the adhesion of layers is demonstrated in the example of bimetallic joints of steel 316L—aluminum alloy AlSi10Mg obtained by the SLM method at various fusion modes.</description><subject>adhesive consolidation criteria</subject><subject>Adhesive joints</subject><subject>Aluminum base alloys</subject><subject>Bimetals</subject><subject>Bond strength</subject><subject>Composite materials</subject><subject>Consolidation</subject><subject>Cracks</subject><subject>Criteria</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Failure analysis</subject><subject>Fracture toughness</subject><subject>functional bimetallic materials (FBM)</subject><subject>functional graded (FG) intermetallic structures</subject><subject>Functionally gradient materials</subject><subject>Heat</subject><subject>Interfaces</subject><subject>Internal energy</subject><subject>laser-controlled reaction synthesis</subject><subject>Lasers</subject><subject>Mechanics</subject><subject>selective laser melting (SLM)</subject><subject>Thermal expansion</subject><subject>thermodynamical approach</subject><subject>Thermodynamics</subject><subject>Trends</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqT35BxY8SnQ_kmz2WIOthYoe6nmZ7IfdkmTrJkX67922UjqXGd483sybSZJ7gp8YE_i5NQMhhBJR4KtkRDHP04xjcn1R3yaTvt_gGCUtsBCj5PczgBqcggZNt9vgaxic75C3aLU2ofV630HrFKqCG0xwgKwPaFgbVPmu943TZ_6LiwtA00QydBrNdp06tCKyR_MA2pluQO9wVGn6u-TGxmQm_3mcfM1eV9VbuvyYL6rpMlWsyIaUltoKVZSEmiynmJZgca4YzrXVghHBcihqpqhWlBdA8xpzDoqSrD6YtIKNk8VJV3vYyG1wLYS99ODkEfDhW0KI_hsjOVWZUDnDBExGuAJbc2sEZrYsmahx1Ho4acU7_exMP8iN34XosJe0ILQkBed5ZD2eWCr4vg_GnqcSLA-PkhePYn_KV4Yo</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Khaimovich, Alexander</creator><creator>Erisov, Yaroslav</creator><creator>Agapovichev, Anton</creator><creator>Shishkovsky, Igor</creator><creator>Smelov, Vitaliy</creator><creator>Razzhivin, Vasilii</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9556-6290</orcidid><orcidid>https://orcid.org/0000-0001-9750-8211</orcidid><orcidid>https://orcid.org/0000-0002-4404-9020</orcidid><orcidid>https://orcid.org/0000-0001-9735-5307</orcidid></search><sort><creationdate>20211201</creationdate><title>Practical Approbation of Thermodynamic Criteria for the Consolidation of Bimetallic and Functionally Gradient Materials</title><author>Khaimovich, Alexander ; Erisov, Yaroslav ; Agapovichev, Anton ; Shishkovsky, Igor ; Smelov, Vitaliy ; Razzhivin, Vasilii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-28df9c6812e452028af05c305dfd931935a6b3c2dc276a25b077ac214b0000f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adhesive consolidation criteria</topic><topic>Adhesive joints</topic><topic>Aluminum base alloys</topic><topic>Bimetals</topic><topic>Bond strength</topic><topic>Composite materials</topic><topic>Consolidation</topic><topic>Cracks</topic><topic>Criteria</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Failure analysis</topic><topic>Fracture toughness</topic><topic>functional bimetallic materials (FBM)</topic><topic>functional graded (FG) intermetallic structures</topic><topic>Functionally gradient materials</topic><topic>Heat</topic><topic>Interfaces</topic><topic>Internal energy</topic><topic>laser-controlled reaction synthesis</topic><topic>Lasers</topic><topic>Mechanics</topic><topic>selective laser melting (SLM)</topic><topic>Thermal expansion</topic><topic>thermodynamical approach</topic><topic>Thermodynamics</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaimovich, Alexander</creatorcontrib><creatorcontrib>Erisov, Yaroslav</creatorcontrib><creatorcontrib>Agapovichev, Anton</creatorcontrib><creatorcontrib>Shishkovsky, Igor</creatorcontrib><creatorcontrib>Smelov, Vitaliy</creatorcontrib><creatorcontrib>Razzhivin, Vasilii</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaimovich, Alexander</au><au>Erisov, Yaroslav</au><au>Agapovichev, Anton</au><au>Shishkovsky, Igor</au><au>Smelov, Vitaliy</au><au>Razzhivin, Vasilii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Approbation of Thermodynamic Criteria for the Consolidation of Bimetallic and Functionally Gradient Materials</atitle><jtitle>Metals (Basel )</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>1960</spage><pages>1960-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>This study concerns the key problem of determining the conditions for the consolidation or fracture of bimetallic compounds and high-gradient materials with different coefficients of thermal expansion. The well-known approach to determining the strength is based on the assessment of the critical energy release rates during fracture, depending on the conditions of loading (the portion of shear loading). Unfortunately, most of the experimental results cannot be used directly to select suitable fracture toughness criteria before such a connection is made. This especially applies to the region of interphase interaction, when it is required to estimate the internal energy of destruction accumulated during the preparation of the joint in the adhesion layer within the range of 20–50 μm. Hence, criteria for the adhesive consolidation of bimetallic compound layers were obtained on the basis of the thermodynamics of nonequilibrium processes. The analysis of the quality of the joint using the obtained criteria was carried out on the basis of the calculation of isochoric and isobaric heat capacities and coefficients of thermal expansion of multiphase layers. The applicability of the criteria for the qualitative assessment of the adhesion of layers is demonstrated in the example of bimetallic joints of steel 316L—aluminum alloy AlSi10Mg obtained by the SLM method at various fusion modes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11121960</doi><orcidid>https://orcid.org/0000-0001-9556-6290</orcidid><orcidid>https://orcid.org/0000-0001-9750-8211</orcidid><orcidid>https://orcid.org/0000-0002-4404-9020</orcidid><orcidid>https://orcid.org/0000-0001-9735-5307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2021-12, Vol.11 (12), p.1960
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_72c49c5301ae417cafb7fe903f8839b0
source Publicly Available Content (ProQuest)
subjects adhesive consolidation criteria
Adhesive joints
Aluminum base alloys
Bimetals
Bond strength
Composite materials
Consolidation
Cracks
Criteria
Energy
Equilibrium
Failure analysis
Fracture toughness
functional bimetallic materials (FBM)
functional graded (FG) intermetallic structures
Functionally gradient materials
Heat
Interfaces
Internal energy
laser-controlled reaction synthesis
Lasers
Mechanics
selective laser melting (SLM)
Thermal expansion
thermodynamical approach
Thermodynamics
Trends
title Practical Approbation of Thermodynamic Criteria for the Consolidation of Bimetallic and Functionally Gradient Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Approbation%20of%20Thermodynamic%20Criteria%20for%20the%20Consolidation%20of%20Bimetallic%20and%20Functionally%20Gradient%20Materials&rft.jtitle=Metals%20(Basel%20)&rft.au=Khaimovich,%20Alexander&rft.date=2021-12-01&rft.volume=11&rft.issue=12&rft.spage=1960&rft.pages=1960-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11121960&rft_dat=%3Cproquest_doaj_%3E2612816775%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-28df9c6812e452028af05c305dfd931935a6b3c2dc276a25b077ac214b0000f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612816775&rft_id=info:pmid/&rfr_iscdi=true