Loading…
Using an analogical reasoning framework to infer language patterns for negative life events
Feelings of depression can be caused by negative life events (NLE) such as the death of a family member, a quarrel with one's spouse, job loss, or strong criticism from an authority figure. The automatic and accurate identification of negative life event language patterns (NLE-LP) can help iden...
Saved in:
Published in: | BMC medical informatics and decision making 2019-08, Vol.19 (1), p.173-173, Article 173 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Feelings of depression can be caused by negative life events (NLE) such as the death of a family member, a quarrel with one's spouse, job loss, or strong criticism from an authority figure. The automatic and accurate identification of negative life event language patterns (NLE-LP) can help identify individuals potentially in need of psychiatric services. An NLE-LP combines a person (subject) and a reasonable negative life event (action), e.g. or .
This paper proposes an analogical reasoning framework which combines a word representation approach and a pattern inference method to mine/extract NLE-LPs from psychiatric consultation documents. Word representation approaches such as skip-gram (SG) and continuous bag-of-words (CBOW) are used to generate word embeddings. Pattern inference methods such as cosine similarity (COSINE) and cosine multiplication similarity (COSMUL) are used to infer patterns.
Experimental results show our proposed analogical reasoning framework outperforms the traditional methods such as positive pairwise mutual information (PPMI) and hyperspace analog to language (HAL), and can effectively mine highly precise NLE-LPs based on word embeddings. CBOW with COSINE of analogical reasoning is the best word representation and inference engine. In addition, both word embeddings and the inference engine provided by the analogical reasoning framework can further be used to improve the HAL model.
Our proposed framework is a very simple matching function based on these word representation approaches and is applied to significantly improve HAL model mining performance. |
---|---|
ISSN: | 1472-6947 1472-6947 |
DOI: | 10.1186/s12911-019-0895-8 |