Loading…
Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals
In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-10, Vol.10 (10), p.2066 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3 |
container_end_page | |
container_issue | 10 |
container_start_page | 2066 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 10 |
creator | Shih, Yu-Tai Tsai, Yu-Ching Lin, Der-Yu |
description | In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data. |
doi_str_mv | 10.3390/nano10102066 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73594331378e40f5864696603c92bc6d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73594331378e40f5864696603c92bc6d</doaj_id><sourcerecordid>2453688769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</originalsourceid><addsrcrecordid>eNpdkc1uEzEQgC0EolXpjQdYiQsHAv4d2xckFEGJFLWHlLPleL2No41dbG_V8ASc-4h9EgypUNu5zGjm06fRDEJvCf7ImMafoo2JYIIpBniBjimWesa1Ji8f1UfotJQtbqEJU4K9RkeMYQUSxDFarvaxbnwJpbOx7-Ybm62rPodftoYUuzR082kRyf3vu9sze7vytFv5XXAp9pOrKXfnbQOX96XasbxBr4aW_OlDPkE_vn29nH-fLS_OFvMvy5njQtSZpFpwQhhI1gsPHHNBvLaeSsKZ9XggGrhS2q1BqF4qKsFKznC_1gpAe3aCFgdvn-zWXOews3lvkg3mXyPlK2NzDW70RjKhOWOESeU5HoQCDhoAM6fp2kHfXJ8PrutpvfO987FmOz6RPp3EsDFX6cZIoTEmsgnePwhy-jn5Us0uFOfH0UafpmIoFwyUkqAb-u4Zuk1Tju1UhgqudEMEb9SHA-VyKiX74f8yBJu_XzePv87-ALLjnK8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548969354</pqid></control><display><type>article</type><title>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Shih, Yu-Tai ; Tsai, Yu-Ching ; Lin, Der-Yu</creator><creatorcontrib>Shih, Yu-Tai ; Tsai, Yu-Ching ; Lin, Der-Yu</creatorcontrib><description>In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10102066</identifier><identifier>PMID: 33086765</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption spectra ; Alternative energy sources ; band gap energy ; Chalcopyrite ; Crystals ; CuIn1−xGaxSe2 ; Energy gap ; Lattice parameters ; Manufacturing ; Morphology ; Nanocrystals ; Optical properties ; Particle size ; Photovoltaic cells ; Production costs ; Quantum dots ; R&D ; Radiation ; Raman spectra ; Raman spectroscopy ; Research & development ; Sensors ; Synthesis ; Transmission electron microscopy ; Vegard’s law ; Wavelengths ; X-ray diffraction</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-10, Vol.10 (10), p.2066</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</citedby><cites>FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548969354/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548969354?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Shih, Yu-Tai</creatorcontrib><creatorcontrib>Tsai, Yu-Ching</creatorcontrib><creatorcontrib>Lin, Der-Yu</creatorcontrib><title>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</title><title>Nanomaterials (Basel, Switzerland)</title><description>In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data.</description><subject>Absorption spectra</subject><subject>Alternative energy sources</subject><subject>band gap energy</subject><subject>Chalcopyrite</subject><subject>Crystals</subject><subject>CuIn1−xGaxSe2</subject><subject>Energy gap</subject><subject>Lattice parameters</subject><subject>Manufacturing</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Optical properties</subject><subject>Particle size</subject><subject>Photovoltaic cells</subject><subject>Production costs</subject><subject>Quantum dots</subject><subject>R&D</subject><subject>Radiation</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Research & development</subject><subject>Sensors</subject><subject>Synthesis</subject><subject>Transmission electron microscopy</subject><subject>Vegard’s law</subject><subject>Wavelengths</subject><subject>X-ray diffraction</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1uEzEQgC0EolXpjQdYiQsHAv4d2xckFEGJFLWHlLPleL2No41dbG_V8ASc-4h9EgypUNu5zGjm06fRDEJvCf7ImMafoo2JYIIpBniBjimWesa1Ji8f1UfotJQtbqEJU4K9RkeMYQUSxDFarvaxbnwJpbOx7-Ybm62rPodftoYUuzR082kRyf3vu9sze7vytFv5XXAp9pOrKXfnbQOX96XasbxBr4aW_OlDPkE_vn29nH-fLS_OFvMvy5njQtSZpFpwQhhI1gsPHHNBvLaeSsKZ9XggGrhS2q1BqF4qKsFKznC_1gpAe3aCFgdvn-zWXOews3lvkg3mXyPlK2NzDW70RjKhOWOESeU5HoQCDhoAM6fp2kHfXJ8PrutpvfO987FmOz6RPp3EsDFX6cZIoTEmsgnePwhy-jn5Us0uFOfH0UafpmIoFwyUkqAb-u4Zuk1Tju1UhgqudEMEb9SHA-VyKiX74f8yBJu_XzePv87-ALLjnK8</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Shih, Yu-Tai</creator><creator>Tsai, Yu-Ching</creator><creator>Lin, Der-Yu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201019</creationdate><title>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</title><author>Shih, Yu-Tai ; Tsai, Yu-Ching ; Lin, Der-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Alternative energy sources</topic><topic>band gap energy</topic><topic>Chalcopyrite</topic><topic>Crystals</topic><topic>CuIn1−xGaxSe2</topic><topic>Energy gap</topic><topic>Lattice parameters</topic><topic>Manufacturing</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Optical properties</topic><topic>Particle size</topic><topic>Photovoltaic cells</topic><topic>Production costs</topic><topic>Quantum dots</topic><topic>R&D</topic><topic>Radiation</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Research & development</topic><topic>Sensors</topic><topic>Synthesis</topic><topic>Transmission electron microscopy</topic><topic>Vegard’s law</topic><topic>Wavelengths</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shih, Yu-Tai</creatorcontrib><creatorcontrib>Tsai, Yu-Ching</creatorcontrib><creatorcontrib>Lin, Der-Yu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Yu-Tai</au><au>Tsai, Yu-Ching</au><au>Lin, Der-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2020-10-19</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>2066</spage><pages>2066-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33086765</pmid><doi>10.3390/nano10102066</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2020-10, Vol.10 (10), p.2066 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_73594331378e40f5864696603c92bc6d |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Absorption spectra Alternative energy sources band gap energy Chalcopyrite Crystals CuIn1−xGaxSe2 Energy gap Lattice parameters Manufacturing Morphology Nanocrystals Optical properties Particle size Photovoltaic cells Production costs Quantum dots R&D Radiation Raman spectra Raman spectroscopy Research & development Sensors Synthesis Transmission electron microscopy Vegard’s law Wavelengths X-ray diffraction |
title | Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20CuIn1%E2%88%92xGaxSe2%20Semiconductor%20Nanocrystals&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Shih,%20Yu-Tai&rft.date=2020-10-19&rft.volume=10&rft.issue=10&rft.spage=2066&rft.pages=2066-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10102066&rft_dat=%3Cproquest_doaj_%3E2453688769%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548969354&rft_id=info:pmid/33086765&rfr_iscdi=true |