Loading…

Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals

In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-10, Vol.10 (10), p.2066
Main Authors: Shih, Yu-Tai, Tsai, Yu-Ching, Lin, Der-Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3
cites cdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3
container_end_page
container_issue 10
container_start_page 2066
container_title Nanomaterials (Basel, Switzerland)
container_volume 10
creator Shih, Yu-Tai
Tsai, Yu-Ching
Lin, Der-Yu
description In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data.
doi_str_mv 10.3390/nano10102066
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73594331378e40f5864696603c92bc6d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73594331378e40f5864696603c92bc6d</doaj_id><sourcerecordid>2453688769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</originalsourceid><addsrcrecordid>eNpdkc1uEzEQgC0EolXpjQdYiQsHAv4d2xckFEGJFLWHlLPleL2No41dbG_V8ASc-4h9EgypUNu5zGjm06fRDEJvCf7ImMafoo2JYIIpBniBjimWesa1Ji8f1UfotJQtbqEJU4K9RkeMYQUSxDFarvaxbnwJpbOx7-Ybm62rPodftoYUuzR082kRyf3vu9sze7vytFv5XXAp9pOrKXfnbQOX96XasbxBr4aW_OlDPkE_vn29nH-fLS_OFvMvy5njQtSZpFpwQhhI1gsPHHNBvLaeSsKZ9XggGrhS2q1BqF4qKsFKznC_1gpAe3aCFgdvn-zWXOews3lvkg3mXyPlK2NzDW70RjKhOWOESeU5HoQCDhoAM6fp2kHfXJ8PrutpvfO987FmOz6RPp3EsDFX6cZIoTEmsgnePwhy-jn5Us0uFOfH0UafpmIoFwyUkqAb-u4Zuk1Tju1UhgqudEMEb9SHA-VyKiX74f8yBJu_XzePv87-ALLjnK8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548969354</pqid></control><display><type>article</type><title>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Shih, Yu-Tai ; Tsai, Yu-Ching ; Lin, Der-Yu</creator><creatorcontrib>Shih, Yu-Tai ; Tsai, Yu-Ching ; Lin, Der-Yu</creatorcontrib><description>In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10102066</identifier><identifier>PMID: 33086765</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption spectra ; Alternative energy sources ; band gap energy ; Chalcopyrite ; Crystals ; CuIn1−xGaxSe2 ; Energy gap ; Lattice parameters ; Manufacturing ; Morphology ; Nanocrystals ; Optical properties ; Particle size ; Photovoltaic cells ; Production costs ; Quantum dots ; R&amp;D ; Radiation ; Raman spectra ; Raman spectroscopy ; Research &amp; development ; Sensors ; Synthesis ; Transmission electron microscopy ; Vegard’s law ; Wavelengths ; X-ray diffraction</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-10, Vol.10 (10), p.2066</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</citedby><cites>FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548969354/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548969354?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Shih, Yu-Tai</creatorcontrib><creatorcontrib>Tsai, Yu-Ching</creatorcontrib><creatorcontrib>Lin, Der-Yu</creatorcontrib><title>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</title><title>Nanomaterials (Basel, Switzerland)</title><description>In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data.</description><subject>Absorption spectra</subject><subject>Alternative energy sources</subject><subject>band gap energy</subject><subject>Chalcopyrite</subject><subject>Crystals</subject><subject>CuIn1−xGaxSe2</subject><subject>Energy gap</subject><subject>Lattice parameters</subject><subject>Manufacturing</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Optical properties</subject><subject>Particle size</subject><subject>Photovoltaic cells</subject><subject>Production costs</subject><subject>Quantum dots</subject><subject>R&amp;D</subject><subject>Radiation</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Research &amp; development</subject><subject>Sensors</subject><subject>Synthesis</subject><subject>Transmission electron microscopy</subject><subject>Vegard’s law</subject><subject>Wavelengths</subject><subject>X-ray diffraction</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1uEzEQgC0EolXpjQdYiQsHAv4d2xckFEGJFLWHlLPleL2No41dbG_V8ASc-4h9EgypUNu5zGjm06fRDEJvCf7ImMafoo2JYIIpBniBjimWesa1Ji8f1UfotJQtbqEJU4K9RkeMYQUSxDFarvaxbnwJpbOx7-Ybm62rPodftoYUuzR082kRyf3vu9sze7vytFv5XXAp9pOrKXfnbQOX96XasbxBr4aW_OlDPkE_vn29nH-fLS_OFvMvy5njQtSZpFpwQhhI1gsPHHNBvLaeSsKZ9XggGrhS2q1BqF4qKsFKznC_1gpAe3aCFgdvn-zWXOews3lvkg3mXyPlK2NzDW70RjKhOWOESeU5HoQCDhoAM6fp2kHfXJ8PrutpvfO987FmOz6RPp3EsDFX6cZIoTEmsgnePwhy-jn5Us0uFOfH0UafpmIoFwyUkqAb-u4Zuk1Tju1UhgqudEMEb9SHA-VyKiX74f8yBJu_XzePv87-ALLjnK8</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Shih, Yu-Tai</creator><creator>Tsai, Yu-Ching</creator><creator>Lin, Der-Yu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201019</creationdate><title>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</title><author>Shih, Yu-Tai ; Tsai, Yu-Ching ; Lin, Der-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Alternative energy sources</topic><topic>band gap energy</topic><topic>Chalcopyrite</topic><topic>Crystals</topic><topic>CuIn1−xGaxSe2</topic><topic>Energy gap</topic><topic>Lattice parameters</topic><topic>Manufacturing</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Optical properties</topic><topic>Particle size</topic><topic>Photovoltaic cells</topic><topic>Production costs</topic><topic>Quantum dots</topic><topic>R&amp;D</topic><topic>Radiation</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Research &amp; development</topic><topic>Sensors</topic><topic>Synthesis</topic><topic>Transmission electron microscopy</topic><topic>Vegard’s law</topic><topic>Wavelengths</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shih, Yu-Tai</creatorcontrib><creatorcontrib>Tsai, Yu-Ching</creatorcontrib><creatorcontrib>Lin, Der-Yu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Yu-Tai</au><au>Tsai, Yu-Ching</au><au>Lin, Der-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2020-10-19</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>2066</spage><pages>2066-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this paper, the synthesis and characterization of CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanocrystals are reported with the influences of x value on the structural, morphological, and optical properties of the nanocrystals. The X-ray diffraction (XRD) results showed that the nanocrystals were of chalcopyrite structure with particle size in the range of 11.5–17.4 nm. Their lattice constants decreased with increasing Ga content. Thus, the x value of the CuIn1−xGaxSe2 nanocrystals was estimated by Vegard’s law. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the nanocrystals agreed with the results of XRD. Well-defined lattice fringes were shown in the TEM images. An analysis of the absorption spectra indicated that the band gap energy of these CuIn1−xGaxSe2 nanocrystals was tuned from 1.11 to 1.72 eV by varying the x value from 0 to 1. The Raman spectra indicated that the A1 optical vibrational mode of the nanocrystals gradually shifted to higher wavenumber with increasing x value. A simple theoretical equation for the A1 mode frequency was proposed. The plot of this equation showed the same trend as the experimental data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33086765</pmid><doi>10.3390/nano10102066</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2020-10, Vol.10 (10), p.2066
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_73594331378e40f5864696603c92bc6d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Absorption spectra
Alternative energy sources
band gap energy
Chalcopyrite
Crystals
CuIn1−xGaxSe2
Energy gap
Lattice parameters
Manufacturing
Morphology
Nanocrystals
Optical properties
Particle size
Photovoltaic cells
Production costs
Quantum dots
R&D
Radiation
Raman spectra
Raman spectroscopy
Research & development
Sensors
Synthesis
Transmission electron microscopy
Vegard’s law
Wavelengths
X-ray diffraction
title Synthesis and Characterization of CuIn1−xGaxSe2 Semiconductor Nanocrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20CuIn1%E2%88%92xGaxSe2%20Semiconductor%20Nanocrystals&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Shih,%20Yu-Tai&rft.date=2020-10-19&rft.volume=10&rft.issue=10&rft.spage=2066&rft.pages=2066-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10102066&rft_dat=%3Cproquest_doaj_%3E2453688769%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-72954113673d5e640451e9ae27143ae0f1964889cb658d78276a7430db98669e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548969354&rft_id=info:pmid/33086765&rfr_iscdi=true