Loading…
Impact of High Temperature and Drought Stresses on Chickpea Production
Global climate change has caused severe crop yield losses worldwide and is endangering food security in the future. The impact of climate change on food production is high in Australia and globally. Climate change is projected to have a negative impact on crop production. Chickpea is a cool season l...
Saved in:
Published in: | Agronomy (Basel) 2018-08, Vol.8 (8), p.145 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Global climate change has caused severe crop yield losses worldwide and is endangering food security in the future. The impact of climate change on food production is high in Australia and globally. Climate change is projected to have a negative impact on crop production. Chickpea is a cool season legume crop mostly grown on residual soil moisture. High temperature and terminal drought are common in different regions of chickpea production with varying intensities and frequencies. Therefore, stable chickpea production will depend on the release of new cultivars with improved adaptation to major events such as drought and high temperature. Recent progress in chickpea breeding has increased the efficiency of assessing genetic diversity in germplasm collections. This review provides an overview of the integration of new approaches and tools into breeding programs and their impact on the development of stress tolerance in chickpea. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy8080145 |