Loading…

Engineering polar vortex from topologically trivial domain architecture

Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, a...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-07, Vol.12 (1), p.4620-4620, Article 4620
Main Authors: Tan, Congbing, Dong, Yongqi, Sun, Yuanwei, Liu, Chang, Chen, Pan, Zhong, Xiangli, Zhu, Ruixue, Liu, Mingwei, Zhang, Jingmin, Wang, Jinbin, Liu, Kaihui, Bai, Xuedong, Yu, Dapeng, Ouyang, Xiaoping, Wang, Jie, Gao, Peng, Luo, Zhenlin, Li, Jiangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933
cites cdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933
container_end_page 4620
container_issue 1
container_start_page 4620
container_title Nature communications
container_volume 12
creator Tan, Congbing
Dong, Yongqi
Sun, Yuanwei
Liu, Chang
Chen, Pan
Zhong, Xiangli
Zhu, Ruixue
Liu, Mingwei
Zhang, Jingmin
Wang, Jinbin
Liu, Kaihui
Bai, Xuedong
Yu, Dapeng
Ouyang, Xiaoping
Wang, Jie
Gao, Peng
Luo, Zhenlin
Li, Jiangyu
description Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices. The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice.
doi_str_mv 10.1038/s41467-021-24922-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73a1766808d3494ea77a826e94b8e7de</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73a1766808d3494ea77a826e94b8e7de</doaj_id><sourcerecordid>2556540262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEolXpC7BAkdiwCdjXTmxvkFBVSqVKbGBt3Tg3qUdJPNiZEfP29TSltCzwwrbsc49_vqJ4y9lHzoT-lCSXjaoY8AqkAagOL4pTYJJXXIF4-WR-UpyntGG5CcO1lK-LEyGFYIbXp8XV5Tz4mSj6eSi3YcRY7kNc6HfZxzCVS8hrYfAOx_FQLtHvPY5lFyb0c4nR3fqF3LKL9KZ41eOY6PxhPCt-fr38cfGtuvl-dX3x5aZytWRLhT021Jkm9wwR-rZ1hKyW0Mkeal2DqR1qCb3RvOHcKKS-bnuiFrvWGCHOiuvV2wXc2G30E8aDDejt_UKIg8W4eDeSVQK5ahrNdCekkYRKoYaGjGw1qY6y6_Pq2u7aiTpH8xJxfCZ9vjP7WzuEvdUCpNIsCz48CGL4taO02MknR-OIM4VdslDXCsAIpTL6_h90E3Zxzl91pJr8OdBApmClXAwpReofL8OZPcZu19htjt3ex24Puejd02c8lvwJOQNiBdL2GDPFv2f_R3sHTQ-6Xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556540262</pqid></control><display><type>article</type><title>Engineering polar vortex from topologically trivial domain architecture</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central (Training)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tan, Congbing ; Dong, Yongqi ; Sun, Yuanwei ; Liu, Chang ; Chen, Pan ; Zhong, Xiangli ; Zhu, Ruixue ; Liu, Mingwei ; Zhang, Jingmin ; Wang, Jinbin ; Liu, Kaihui ; Bai, Xuedong ; Yu, Dapeng ; Ouyang, Xiaoping ; Wang, Jie ; Gao, Peng ; Luo, Zhenlin ; Li, Jiangyu</creator><creatorcontrib>Tan, Congbing ; Dong, Yongqi ; Sun, Yuanwei ; Liu, Chang ; Chen, Pan ; Zhong, Xiangli ; Zhu, Ruixue ; Liu, Mingwei ; Zhang, Jingmin ; Wang, Jinbin ; Liu, Kaihui ; Bai, Xuedong ; Yu, Dapeng ; Ouyang, Xiaoping ; Wang, Jie ; Gao, Peng ; Luo, Zhenlin ; Li, Jiangyu</creatorcontrib><description>Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices. The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24922-y</identifier><identifier>PMID: 34330915</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/136 ; 147/137 ; 147/143 ; 147/3 ; 639/301/1005/1008 ; 639/766/119/996 ; Arrays ; Capacitance ; Data storage ; Domains ; Elastostatics ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Humanities and Social Sciences ; Lamella ; Lead titanates ; multidisciplinary ; Polar vortex ; Reconstruction ; Science ; Science (multidisciplinary) ; Strip ; Strontium titanates ; Superlattices ; Thin films ; Topology</subject><ispartof>Nature communications, 2021-07, Vol.12 (1), p.4620-4620, Article 4620</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</citedby><cites>FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</cites><orcidid>0000-0002-8781-2495 ; 0000-0001-5192-7648 ; 0000-0003-4358-2648 ; 0000-0002-2639-9131 ; 0000-0001-7854-9376 ; 0000-0002-7196-6537 ; 0000-0001-9945-5037 ; 0000-0002-1403-491X ; 0000-0001-9868-2115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2556540262/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2556540262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34330915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Congbing</creatorcontrib><creatorcontrib>Dong, Yongqi</creatorcontrib><creatorcontrib>Sun, Yuanwei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Chen, Pan</creatorcontrib><creatorcontrib>Zhong, Xiangli</creatorcontrib><creatorcontrib>Zhu, Ruixue</creatorcontrib><creatorcontrib>Liu, Mingwei</creatorcontrib><creatorcontrib>Zhang, Jingmin</creatorcontrib><creatorcontrib>Wang, Jinbin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Bai, Xuedong</creatorcontrib><creatorcontrib>Yu, Dapeng</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Luo, Zhenlin</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><title>Engineering polar vortex from topologically trivial domain architecture</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices. The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice.</description><subject>147/136</subject><subject>147/137</subject><subject>147/143</subject><subject>147/3</subject><subject>639/301/1005/1008</subject><subject>639/766/119/996</subject><subject>Arrays</subject><subject>Capacitance</subject><subject>Data storage</subject><subject>Domains</subject><subject>Elastostatics</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Humanities and Social Sciences</subject><subject>Lamella</subject><subject>Lead titanates</subject><subject>multidisciplinary</subject><subject>Polar vortex</subject><subject>Reconstruction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strip</subject><subject>Strontium titanates</subject><subject>Superlattices</subject><subject>Thin films</subject><subject>Topology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAURiMEolXpC7BAkdiwCdjXTmxvkFBVSqVKbGBt3Tg3qUdJPNiZEfP29TSltCzwwrbsc49_vqJ4y9lHzoT-lCSXjaoY8AqkAagOL4pTYJJXXIF4-WR-UpyntGG5CcO1lK-LEyGFYIbXp8XV5Tz4mSj6eSi3YcRY7kNc6HfZxzCVS8hrYfAOx_FQLtHvPY5lFyb0c4nR3fqF3LKL9KZ41eOY6PxhPCt-fr38cfGtuvl-dX3x5aZytWRLhT021Jkm9wwR-rZ1hKyW0Mkeal2DqR1qCb3RvOHcKKS-bnuiFrvWGCHOiuvV2wXc2G30E8aDDejt_UKIg8W4eDeSVQK5ahrNdCekkYRKoYaGjGw1qY6y6_Pq2u7aiTpH8xJxfCZ9vjP7WzuEvdUCpNIsCz48CGL4taO02MknR-OIM4VdslDXCsAIpTL6_h90E3Zxzl91pJr8OdBApmClXAwpReofL8OZPcZu19htjt3ex24Puejd02c8lvwJOQNiBdL2GDPFv2f_R3sHTQ-6Xw</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Tan, Congbing</creator><creator>Dong, Yongqi</creator><creator>Sun, Yuanwei</creator><creator>Liu, Chang</creator><creator>Chen, Pan</creator><creator>Zhong, Xiangli</creator><creator>Zhu, Ruixue</creator><creator>Liu, Mingwei</creator><creator>Zhang, Jingmin</creator><creator>Wang, Jinbin</creator><creator>Liu, Kaihui</creator><creator>Bai, Xuedong</creator><creator>Yu, Dapeng</creator><creator>Ouyang, Xiaoping</creator><creator>Wang, Jie</creator><creator>Gao, Peng</creator><creator>Luo, Zhenlin</creator><creator>Li, Jiangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0001-5192-7648</orcidid><orcidid>https://orcid.org/0000-0003-4358-2648</orcidid><orcidid>https://orcid.org/0000-0002-2639-9131</orcidid><orcidid>https://orcid.org/0000-0001-7854-9376</orcidid><orcidid>https://orcid.org/0000-0002-7196-6537</orcidid><orcidid>https://orcid.org/0000-0001-9945-5037</orcidid><orcidid>https://orcid.org/0000-0002-1403-491X</orcidid><orcidid>https://orcid.org/0000-0001-9868-2115</orcidid></search><sort><creationdate>20210730</creationdate><title>Engineering polar vortex from topologically trivial domain architecture</title><author>Tan, Congbing ; Dong, Yongqi ; Sun, Yuanwei ; Liu, Chang ; Chen, Pan ; Zhong, Xiangli ; Zhu, Ruixue ; Liu, Mingwei ; Zhang, Jingmin ; Wang, Jinbin ; Liu, Kaihui ; Bai, Xuedong ; Yu, Dapeng ; Ouyang, Xiaoping ; Wang, Jie ; Gao, Peng ; Luo, Zhenlin ; Li, Jiangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>147/136</topic><topic>147/137</topic><topic>147/143</topic><topic>147/3</topic><topic>639/301/1005/1008</topic><topic>639/766/119/996</topic><topic>Arrays</topic><topic>Capacitance</topic><topic>Data storage</topic><topic>Domains</topic><topic>Elastostatics</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Humanities and Social Sciences</topic><topic>Lamella</topic><topic>Lead titanates</topic><topic>multidisciplinary</topic><topic>Polar vortex</topic><topic>Reconstruction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strip</topic><topic>Strontium titanates</topic><topic>Superlattices</topic><topic>Thin films</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Congbing</creatorcontrib><creatorcontrib>Dong, Yongqi</creatorcontrib><creatorcontrib>Sun, Yuanwei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Chen, Pan</creatorcontrib><creatorcontrib>Zhong, Xiangli</creatorcontrib><creatorcontrib>Zhu, Ruixue</creatorcontrib><creatorcontrib>Liu, Mingwei</creatorcontrib><creatorcontrib>Zhang, Jingmin</creatorcontrib><creatorcontrib>Wang, Jinbin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Bai, Xuedong</creatorcontrib><creatorcontrib>Yu, Dapeng</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Luo, Zhenlin</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Congbing</au><au>Dong, Yongqi</au><au>Sun, Yuanwei</au><au>Liu, Chang</au><au>Chen, Pan</au><au>Zhong, Xiangli</au><au>Zhu, Ruixue</au><au>Liu, Mingwei</au><au>Zhang, Jingmin</au><au>Wang, Jinbin</au><au>Liu, Kaihui</au><au>Bai, Xuedong</au><au>Yu, Dapeng</au><au>Ouyang, Xiaoping</au><au>Wang, Jie</au><au>Gao, Peng</au><au>Luo, Zhenlin</au><au>Li, Jiangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering polar vortex from topologically trivial domain architecture</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-07-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4620</spage><epage>4620</epage><pages>4620-4620</pages><artnum>4620</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices. The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO 3 ) 10 /(SrTiO 3 ) 10 superlattice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34330915</pmid><doi>10.1038/s41467-021-24922-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0001-5192-7648</orcidid><orcidid>https://orcid.org/0000-0003-4358-2648</orcidid><orcidid>https://orcid.org/0000-0002-2639-9131</orcidid><orcidid>https://orcid.org/0000-0001-7854-9376</orcidid><orcidid>https://orcid.org/0000-0002-7196-6537</orcidid><orcidid>https://orcid.org/0000-0001-9945-5037</orcidid><orcidid>https://orcid.org/0000-0002-1403-491X</orcidid><orcidid>https://orcid.org/0000-0001-9868-2115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-07, Vol.12 (1), p.4620-4620, Article 4620
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_73a1766808d3494ea77a826e94b8e7de
source Nature; Publicly Available Content (ProQuest); PubMed Central (Training); Springer Nature - nature.com Journals - Fully Open Access
subjects 147/136
147/137
147/143
147/3
639/301/1005/1008
639/766/119/996
Arrays
Capacitance
Data storage
Domains
Elastostatics
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Humanities and Social Sciences
Lamella
Lead titanates
multidisciplinary
Polar vortex
Reconstruction
Science
Science (multidisciplinary)
Strip
Strontium titanates
Superlattices
Thin films
Topology
title Engineering polar vortex from topologically trivial domain architecture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20polar%20vortex%20from%20topologically%20trivial%20domain%20architecture&rft.jtitle=Nature%20communications&rft.au=Tan,%20Congbing&rft.date=2021-07-30&rft.volume=12&rft.issue=1&rft.spage=4620&rft.epage=4620&rft.pages=4620-4620&rft.artnum=4620&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24922-y&rft_dat=%3Cproquest_doaj_%3E2556540262%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556540262&rft_id=info:pmid/34330915&rfr_iscdi=true