Loading…
Engineering polar vortex from topologically trivial domain architecture
Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, a...
Saved in:
Published in: | Nature communications 2021-07, Vol.12 (1), p.4620-4620, Article 4620 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933 |
container_end_page | 4620 |
container_issue | 1 |
container_start_page | 4620 |
container_title | Nature communications |
container_volume | 12 |
creator | Tan, Congbing Dong, Yongqi Sun, Yuanwei Liu, Chang Chen, Pan Zhong, Xiangli Zhu, Ruixue Liu, Mingwei Zhang, Jingmin Wang, Jinbin Liu, Kaihui Bai, Xuedong Yu, Dapeng Ouyang, Xiaoping Wang, Jie Gao, Peng Luo, Zhenlin Li, Jiangyu |
description | Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices.
The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice. |
doi_str_mv | 10.1038/s41467-021-24922-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73a1766808d3494ea77a826e94b8e7de</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73a1766808d3494ea77a826e94b8e7de</doaj_id><sourcerecordid>2556540262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEolXpC7BAkdiwCdjXTmxvkFBVSqVKbGBt3Tg3qUdJPNiZEfP29TSltCzwwrbsc49_vqJ4y9lHzoT-lCSXjaoY8AqkAagOL4pTYJJXXIF4-WR-UpyntGG5CcO1lK-LEyGFYIbXp8XV5Tz4mSj6eSi3YcRY7kNc6HfZxzCVS8hrYfAOx_FQLtHvPY5lFyb0c4nR3fqF3LKL9KZ41eOY6PxhPCt-fr38cfGtuvl-dX3x5aZytWRLhT021Jkm9wwR-rZ1hKyW0Mkeal2DqR1qCb3RvOHcKKS-bnuiFrvWGCHOiuvV2wXc2G30E8aDDejt_UKIg8W4eDeSVQK5ahrNdCekkYRKoYaGjGw1qY6y6_Pq2u7aiTpH8xJxfCZ9vjP7WzuEvdUCpNIsCz48CGL4taO02MknR-OIM4VdslDXCsAIpTL6_h90E3Zxzl91pJr8OdBApmClXAwpReofL8OZPcZu19htjt3ex24Puejd02c8lvwJOQNiBdL2GDPFv2f_R3sHTQ-6Xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556540262</pqid></control><display><type>article</type><title>Engineering polar vortex from topologically trivial domain architecture</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central (Training)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tan, Congbing ; Dong, Yongqi ; Sun, Yuanwei ; Liu, Chang ; Chen, Pan ; Zhong, Xiangli ; Zhu, Ruixue ; Liu, Mingwei ; Zhang, Jingmin ; Wang, Jinbin ; Liu, Kaihui ; Bai, Xuedong ; Yu, Dapeng ; Ouyang, Xiaoping ; Wang, Jie ; Gao, Peng ; Luo, Zhenlin ; Li, Jiangyu</creator><creatorcontrib>Tan, Congbing ; Dong, Yongqi ; Sun, Yuanwei ; Liu, Chang ; Chen, Pan ; Zhong, Xiangli ; Zhu, Ruixue ; Liu, Mingwei ; Zhang, Jingmin ; Wang, Jinbin ; Liu, Kaihui ; Bai, Xuedong ; Yu, Dapeng ; Ouyang, Xiaoping ; Wang, Jie ; Gao, Peng ; Luo, Zhenlin ; Li, Jiangyu</creatorcontrib><description>Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices.
The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24922-y</identifier><identifier>PMID: 34330915</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/136 ; 147/137 ; 147/143 ; 147/3 ; 639/301/1005/1008 ; 639/766/119/996 ; Arrays ; Capacitance ; Data storage ; Domains ; Elastostatics ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Humanities and Social Sciences ; Lamella ; Lead titanates ; multidisciplinary ; Polar vortex ; Reconstruction ; Science ; Science (multidisciplinary) ; Strip ; Strontium titanates ; Superlattices ; Thin films ; Topology</subject><ispartof>Nature communications, 2021-07, Vol.12 (1), p.4620-4620, Article 4620</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</citedby><cites>FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</cites><orcidid>0000-0002-8781-2495 ; 0000-0001-5192-7648 ; 0000-0003-4358-2648 ; 0000-0002-2639-9131 ; 0000-0001-7854-9376 ; 0000-0002-7196-6537 ; 0000-0001-9945-5037 ; 0000-0002-1403-491X ; 0000-0001-9868-2115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2556540262/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2556540262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34330915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Congbing</creatorcontrib><creatorcontrib>Dong, Yongqi</creatorcontrib><creatorcontrib>Sun, Yuanwei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Chen, Pan</creatorcontrib><creatorcontrib>Zhong, Xiangli</creatorcontrib><creatorcontrib>Zhu, Ruixue</creatorcontrib><creatorcontrib>Liu, Mingwei</creatorcontrib><creatorcontrib>Zhang, Jingmin</creatorcontrib><creatorcontrib>Wang, Jinbin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Bai, Xuedong</creatorcontrib><creatorcontrib>Yu, Dapeng</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Luo, Zhenlin</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><title>Engineering polar vortex from topologically trivial domain architecture</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices.
The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice.</description><subject>147/136</subject><subject>147/137</subject><subject>147/143</subject><subject>147/3</subject><subject>639/301/1005/1008</subject><subject>639/766/119/996</subject><subject>Arrays</subject><subject>Capacitance</subject><subject>Data storage</subject><subject>Domains</subject><subject>Elastostatics</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Humanities and Social Sciences</subject><subject>Lamella</subject><subject>Lead titanates</subject><subject>multidisciplinary</subject><subject>Polar vortex</subject><subject>Reconstruction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strip</subject><subject>Strontium titanates</subject><subject>Superlattices</subject><subject>Thin films</subject><subject>Topology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAURiMEolXpC7BAkdiwCdjXTmxvkFBVSqVKbGBt3Tg3qUdJPNiZEfP29TSltCzwwrbsc49_vqJ4y9lHzoT-lCSXjaoY8AqkAagOL4pTYJJXXIF4-WR-UpyntGG5CcO1lK-LEyGFYIbXp8XV5Tz4mSj6eSi3YcRY7kNc6HfZxzCVS8hrYfAOx_FQLtHvPY5lFyb0c4nR3fqF3LKL9KZ41eOY6PxhPCt-fr38cfGtuvl-dX3x5aZytWRLhT021Jkm9wwR-rZ1hKyW0Mkeal2DqR1qCb3RvOHcKKS-bnuiFrvWGCHOiuvV2wXc2G30E8aDDejt_UKIg8W4eDeSVQK5ahrNdCekkYRKoYaGjGw1qY6y6_Pq2u7aiTpH8xJxfCZ9vjP7WzuEvdUCpNIsCz48CGL4taO02MknR-OIM4VdslDXCsAIpTL6_h90E3Zxzl91pJr8OdBApmClXAwpReofL8OZPcZu19htjt3ex24Puejd02c8lvwJOQNiBdL2GDPFv2f_R3sHTQ-6Xw</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Tan, Congbing</creator><creator>Dong, Yongqi</creator><creator>Sun, Yuanwei</creator><creator>Liu, Chang</creator><creator>Chen, Pan</creator><creator>Zhong, Xiangli</creator><creator>Zhu, Ruixue</creator><creator>Liu, Mingwei</creator><creator>Zhang, Jingmin</creator><creator>Wang, Jinbin</creator><creator>Liu, Kaihui</creator><creator>Bai, Xuedong</creator><creator>Yu, Dapeng</creator><creator>Ouyang, Xiaoping</creator><creator>Wang, Jie</creator><creator>Gao, Peng</creator><creator>Luo, Zhenlin</creator><creator>Li, Jiangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0001-5192-7648</orcidid><orcidid>https://orcid.org/0000-0003-4358-2648</orcidid><orcidid>https://orcid.org/0000-0002-2639-9131</orcidid><orcidid>https://orcid.org/0000-0001-7854-9376</orcidid><orcidid>https://orcid.org/0000-0002-7196-6537</orcidid><orcidid>https://orcid.org/0000-0001-9945-5037</orcidid><orcidid>https://orcid.org/0000-0002-1403-491X</orcidid><orcidid>https://orcid.org/0000-0001-9868-2115</orcidid></search><sort><creationdate>20210730</creationdate><title>Engineering polar vortex from topologically trivial domain architecture</title><author>Tan, Congbing ; Dong, Yongqi ; Sun, Yuanwei ; Liu, Chang ; Chen, Pan ; Zhong, Xiangli ; Zhu, Ruixue ; Liu, Mingwei ; Zhang, Jingmin ; Wang, Jinbin ; Liu, Kaihui ; Bai, Xuedong ; Yu, Dapeng ; Ouyang, Xiaoping ; Wang, Jie ; Gao, Peng ; Luo, Zhenlin ; Li, Jiangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>147/136</topic><topic>147/137</topic><topic>147/143</topic><topic>147/3</topic><topic>639/301/1005/1008</topic><topic>639/766/119/996</topic><topic>Arrays</topic><topic>Capacitance</topic><topic>Data storage</topic><topic>Domains</topic><topic>Elastostatics</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Humanities and Social Sciences</topic><topic>Lamella</topic><topic>Lead titanates</topic><topic>multidisciplinary</topic><topic>Polar vortex</topic><topic>Reconstruction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strip</topic><topic>Strontium titanates</topic><topic>Superlattices</topic><topic>Thin films</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Congbing</creatorcontrib><creatorcontrib>Dong, Yongqi</creatorcontrib><creatorcontrib>Sun, Yuanwei</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Chen, Pan</creatorcontrib><creatorcontrib>Zhong, Xiangli</creatorcontrib><creatorcontrib>Zhu, Ruixue</creatorcontrib><creatorcontrib>Liu, Mingwei</creatorcontrib><creatorcontrib>Zhang, Jingmin</creatorcontrib><creatorcontrib>Wang, Jinbin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Bai, Xuedong</creatorcontrib><creatorcontrib>Yu, Dapeng</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Luo, Zhenlin</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Congbing</au><au>Dong, Yongqi</au><au>Sun, Yuanwei</au><au>Liu, Chang</au><au>Chen, Pan</au><au>Zhong, Xiangli</au><au>Zhu, Ruixue</au><au>Liu, Mingwei</au><au>Zhang, Jingmin</au><au>Wang, Jinbin</au><au>Liu, Kaihui</au><au>Bai, Xuedong</au><au>Yu, Dapeng</au><au>Ouyang, Xiaoping</au><au>Wang, Jie</au><au>Gao, Peng</au><au>Luo, Zhenlin</au><au>Li, Jiangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering polar vortex from topologically trivial domain architecture</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-07-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4620</spage><epage>4620</epage><pages>4620-4620</pages><artnum>4620</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices.
The majority of polar structures emerging naturally in ferroelectrics are topologically trivial. Here, the authors demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO
3
)
10
/(SrTiO
3
)
10
superlattice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34330915</pmid><doi>10.1038/s41467-021-24922-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0001-5192-7648</orcidid><orcidid>https://orcid.org/0000-0003-4358-2648</orcidid><orcidid>https://orcid.org/0000-0002-2639-9131</orcidid><orcidid>https://orcid.org/0000-0001-7854-9376</orcidid><orcidid>https://orcid.org/0000-0002-7196-6537</orcidid><orcidid>https://orcid.org/0000-0001-9945-5037</orcidid><orcidid>https://orcid.org/0000-0002-1403-491X</orcidid><orcidid>https://orcid.org/0000-0001-9868-2115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-07, Vol.12 (1), p.4620-4620, Article 4620 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_73a1766808d3494ea77a826e94b8e7de |
source | Nature; Publicly Available Content (ProQuest); PubMed Central (Training); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/136 147/137 147/143 147/3 639/301/1005/1008 639/766/119/996 Arrays Capacitance Data storage Domains Elastostatics Ferroelectric materials Ferroelectricity Ferroelectrics Humanities and Social Sciences Lamella Lead titanates multidisciplinary Polar vortex Reconstruction Science Science (multidisciplinary) Strip Strontium titanates Superlattices Thin films Topology |
title | Engineering polar vortex from topologically trivial domain architecture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20polar%20vortex%20from%20topologically%20trivial%20domain%20architecture&rft.jtitle=Nature%20communications&rft.au=Tan,%20Congbing&rft.date=2021-07-30&rft.volume=12&rft.issue=1&rft.spage=4620&rft.epage=4620&rft.pages=4620-4620&rft.artnum=4620&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24922-y&rft_dat=%3Cproquest_doaj_%3E2556540262%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-afa6ed96a6e0aa2fbbcea0542d4f2585295ca842f98161197aef5bfeebadb9933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556540262&rft_id=info:pmid/34330915&rfr_iscdi=true |