Loading…

Analysis of Asymmetric Piecewise Linear Stochastic Resonance Signal Processing Model Based on Genetic Algorithm

The stochastic resonance system has the advantage of making the noise energy transfer to the signal energy. Because the existing stochastic resonance system model has the problem of poor performance, an asymmetric piecewise linear stochastic resonance system model is proposed, and the parameters of...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-11
Main Authors: He, Lina, Jiang, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-d60da0b06406cea63b5dbd70580614224031cf29d16d8ffe1e6db3588db936923
cites cdi_FETCH-LOGICAL-c426t-d60da0b06406cea63b5dbd70580614224031cf29d16d8ffe1e6db3588db936923
container_end_page 11
container_issue 2020
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2020
creator He, Lina
Jiang, Chuan
description The stochastic resonance system has the advantage of making the noise energy transfer to the signal energy. Because the existing stochastic resonance system model has the problem of poor performance, an asymmetric piecewise linear stochastic resonance system model is proposed, and the parameters of the model are optimized by a genetic algorithm. The signal-to-noise ratio formula of the model is derived and analyzed, and the theoretical basis for better performance of the model is given. The influence of the asymmetric coefficient on system performance is studied, which provides guidance for the selection of initial optimization range when a genetic algorithm is used. At the same time, the formula is verified and analyzed by numerical simulation, and the correctness of the formula is proved. Finally, the model is applied to bearing fault detection, and an adaptive genetic algorithm is used to optimize the parameters of the system. The results show that the model has an excellent detection effect, which proves that the model has great potential in fault detection.
doi_str_mv 10.1155/2020/8817814
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73ad7d42c84244a584b27dec347da910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73ad7d42c84244a584b27dec347da910</doaj_id><sourcerecordid>2458480067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d60da0b06406cea63b5dbd70580614224031cf29d16d8ffe1e6db3588db936923</originalsourceid><addsrcrecordid>eNqFkU1PHDEMhkeolaCUW88oEkc6xfmYJHNcUKFIWxVBe44yiWc3q9kJJIPQ_nuyHVSOPdmyH7-29VbVFwrfKG2aCwYMLrSmSlNxUB1RaNsaGiY_7HMla6a0Oqw-5bwBgFZydVTFxWiHXQ6ZxJ4s8m67xSkFR-4COnwJGckyjGgTeZiiW9s8ld495jja0SF5CKsyTu5SdJhzGFfkZ_Q4kEub0ZM4khsccT-yGFYxhWm9_Vx97O2Q8eQtHld_rr__vvpRL3_d3F4tlrUTTE61l-AtdCAFSIdW8q7xnVfQaJBUMCaAU9ez1lPpdd8jRek73mjtu5bLlvHj6nbW9dFuzGMKW5t2Jtpg_hZiWhmbymUDGsWtV14wpwUTwjZadEx5dFwob1sKRets1npM8ekZ82Q28TmVx7NhouAaQKpCfZ0pl2LOCft_WymYvT1mb495s6fg5zO-DqO3L-F_9OlMY2Gwt-80FUI2lL8CzKiYhw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458480067</pqid></control><display><type>article</type><title>Analysis of Asymmetric Piecewise Linear Stochastic Resonance Signal Processing Model Based on Genetic Algorithm</title><source>Wiley Online Library Open Access</source><creator>He, Lina ; Jiang, Chuan</creator><contributor>Lv, Zhihan ; Zhihan Lv</contributor><creatorcontrib>He, Lina ; Jiang, Chuan ; Lv, Zhihan ; Zhihan Lv</creatorcontrib><description>The stochastic resonance system has the advantage of making the noise energy transfer to the signal energy. Because the existing stochastic resonance system model has the problem of poor performance, an asymmetric piecewise linear stochastic resonance system model is proposed, and the parameters of the model are optimized by a genetic algorithm. The signal-to-noise ratio formula of the model is derived and analyzed, and the theoretical basis for better performance of the model is given. The influence of the asymmetric coefficient on system performance is studied, which provides guidance for the selection of initial optimization range when a genetic algorithm is used. At the same time, the formula is verified and analyzed by numerical simulation, and the correctness of the formula is proved. Finally, the model is applied to bearing fault detection, and an adaptive genetic algorithm is used to optimize the parameters of the system. The results show that the model has an excellent detection effect, which proves that the model has great potential in fault detection.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2020/8817814</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive algorithms ; Adaptive systems ; Asymmetry ; Energy transfer ; Fault detection ; Genetic algorithms ; Mathematical models ; Mutation ; Noise ; Optimization ; Parameters ; Signal processing ; Signal to noise ratio ; Stochastic resonance</subject><ispartof>Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Lina He and Chuan Jiang.</rights><rights>Copyright © 2020 Lina He and Chuan Jiang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-d60da0b06406cea63b5dbd70580614224031cf29d16d8ffe1e6db3588db936923</citedby><cites>FETCH-LOGICAL-c426t-d60da0b06406cea63b5dbd70580614224031cf29d16d8ffe1e6db3588db936923</cites><orcidid>0000-0002-9210-4303 ; 0000-0001-8205-8035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Lv, Zhihan</contributor><contributor>Zhihan Lv</contributor><creatorcontrib>He, Lina</creatorcontrib><creatorcontrib>Jiang, Chuan</creatorcontrib><title>Analysis of Asymmetric Piecewise Linear Stochastic Resonance Signal Processing Model Based on Genetic Algorithm</title><title>Complexity (New York, N.Y.)</title><description>The stochastic resonance system has the advantage of making the noise energy transfer to the signal energy. Because the existing stochastic resonance system model has the problem of poor performance, an asymmetric piecewise linear stochastic resonance system model is proposed, and the parameters of the model are optimized by a genetic algorithm. The signal-to-noise ratio formula of the model is derived and analyzed, and the theoretical basis for better performance of the model is given. The influence of the asymmetric coefficient on system performance is studied, which provides guidance for the selection of initial optimization range when a genetic algorithm is used. At the same time, the formula is verified and analyzed by numerical simulation, and the correctness of the formula is proved. Finally, the model is applied to bearing fault detection, and an adaptive genetic algorithm is used to optimize the parameters of the system. The results show that the model has an excellent detection effect, which proves that the model has great potential in fault detection.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Asymmetry</subject><subject>Energy transfer</subject><subject>Fault detection</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Noise</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Stochastic resonance</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1PHDEMhkeolaCUW88oEkc6xfmYJHNcUKFIWxVBe44yiWc3q9kJJIPQ_nuyHVSOPdmyH7-29VbVFwrfKG2aCwYMLrSmSlNxUB1RaNsaGiY_7HMla6a0Oqw-5bwBgFZydVTFxWiHXQ6ZxJ4s8m67xSkFR-4COnwJGckyjGgTeZiiW9s8ld495jja0SF5CKsyTu5SdJhzGFfkZ_Q4kEub0ZM4khsccT-yGFYxhWm9_Vx97O2Q8eQtHld_rr__vvpRL3_d3F4tlrUTTE61l-AtdCAFSIdW8q7xnVfQaJBUMCaAU9ez1lPpdd8jRek73mjtu5bLlvHj6nbW9dFuzGMKW5t2Jtpg_hZiWhmbymUDGsWtV14wpwUTwjZadEx5dFwob1sKRets1npM8ekZ82Q28TmVx7NhouAaQKpCfZ0pl2LOCft_WymYvT1mb495s6fg5zO-DqO3L-F_9OlMY2Gwt-80FUI2lL8CzKiYhw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>He, Lina</creator><creator>Jiang, Chuan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9210-4303</orcidid><orcidid>https://orcid.org/0000-0001-8205-8035</orcidid></search><sort><creationdate>2020</creationdate><title>Analysis of Asymmetric Piecewise Linear Stochastic Resonance Signal Processing Model Based on Genetic Algorithm</title><author>He, Lina ; Jiang, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d60da0b06406cea63b5dbd70580614224031cf29d16d8ffe1e6db3588db936923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Asymmetry</topic><topic>Energy transfer</topic><topic>Fault detection</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Noise</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Stochastic resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Lina</creatorcontrib><creatorcontrib>Jiang, Chuan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Lina</au><au>Jiang, Chuan</au><au>Lv, Zhihan</au><au>Zhihan Lv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Asymmetric Piecewise Linear Stochastic Resonance Signal Processing Model Based on Genetic Algorithm</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>The stochastic resonance system has the advantage of making the noise energy transfer to the signal energy. Because the existing stochastic resonance system model has the problem of poor performance, an asymmetric piecewise linear stochastic resonance system model is proposed, and the parameters of the model are optimized by a genetic algorithm. The signal-to-noise ratio formula of the model is derived and analyzed, and the theoretical basis for better performance of the model is given. The influence of the asymmetric coefficient on system performance is studied, which provides guidance for the selection of initial optimization range when a genetic algorithm is used. At the same time, the formula is verified and analyzed by numerical simulation, and the correctness of the formula is proved. Finally, the model is applied to bearing fault detection, and an adaptive genetic algorithm is used to optimize the parameters of the system. The results show that the model has an excellent detection effect, which proves that the model has great potential in fault detection.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8817814</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9210-4303</orcidid><orcidid>https://orcid.org/0000-0001-8205-8035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-11
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_73ad7d42c84244a584b27dec347da910
source Wiley Online Library Open Access
subjects Adaptive algorithms
Adaptive systems
Asymmetry
Energy transfer
Fault detection
Genetic algorithms
Mathematical models
Mutation
Noise
Optimization
Parameters
Signal processing
Signal to noise ratio
Stochastic resonance
title Analysis of Asymmetric Piecewise Linear Stochastic Resonance Signal Processing Model Based on Genetic Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Asymmetric%20Piecewise%20Linear%20Stochastic%20Resonance%20Signal%20Processing%20Model%20Based%20on%20Genetic%20Algorithm&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=He,%20Lina&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2020/8817814&rft_dat=%3Cproquest_doaj_%3E2458480067%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-d60da0b06406cea63b5dbd70580614224031cf29d16d8ffe1e6db3588db936923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458480067&rft_id=info:pmid/&rfr_iscdi=true