Loading…
Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data
Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the fin...
Saved in:
Published in: | Applied sciences 2022-07, Vol.12 (13), p.6438 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3 |
container_end_page | |
container_issue | 13 |
container_start_page | 6438 |
container_title | Applied sciences |
container_volume | 12 |
creator | Albors, Carlos Lluch, Èric Gomez, Juan Francisco Cedilnik, Nicolas Mountris, Konstantinos A. Mansi, Tommaso Khamzin, Svyatoslav Dokuchaev, Arsenii Solovyova, Olga Pueyo, Esther Sermesant, Maxime Sebastian, Rafael Morales, Hernán G. Camara, Oscar |
description | Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution). |
doi_str_mv | 10.3390/app12136438 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73b08aa3dd594e31b7e2af0196350756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73b08aa3dd594e31b7e2af0196350756</doaj_id><sourcerecordid>2685970960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</originalsourceid><addsrcrecordid>eNpVkc9u1DAQxiMEElXpiRewxAmhFDtO_Oe4LFtaaVeVUDlbE2ey8ZLGwXahy4lXQOIJeRK8bIXKXGb0zaffjGaK4iWj55xr-hbmmVWMi5qrJ8VJRaUoec3k00f18-Isxh3NoRlXjJ4UPzcYhxFjJKsRbQp-HvbR-dFvnYWRbHyHo5u2xPdkCaFzYMlHjPvJDsFP7jsk5ydyM2CAef_7x693mDu3ED6TxQRjJkXyzaWBXLjJJSzzjFucEtlgGnwXiZvI6n7G4A5qHvceErwonvUwRjx7yKfFp4vVzfKyXF9_uFou1qXlWqXSatu3ta0k1L20konOslpTUbNWqY5rQRlrWm0bZQXSrPcoLFWVbFWvdAf8tLg6cjsPOzPnHSDsjQdn_go-bA2E5OyIRvKWKgDedY2ukbNWYgU9ZVrwhspGZNbrI2uA8T_U5WJtDhrlSnBB6VeWva-O3jn4L3cYk9n5u5CvFU0lVKMlzbtn15ujywYfY8D-H5ZRc3i3efRu_gfC4p8e</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685970960</pqid></control><display><type>article</type><title>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</title><source>Publicly Available Content (ProQuest)</source><creator>Albors, Carlos ; Lluch, Èric ; Gomez, Juan Francisco ; Cedilnik, Nicolas ; Mountris, Konstantinos A. ; Mansi, Tommaso ; Khamzin, Svyatoslav ; Dokuchaev, Arsenii ; Solovyova, Olga ; Pueyo, Esther ; Sermesant, Maxime ; Sebastian, Rafael ; Morales, Hernán G. ; Camara, Oscar</creator><creatorcontrib>Albors, Carlos ; Lluch, Èric ; Gomez, Juan Francisco ; Cedilnik, Nicolas ; Mountris, Konstantinos A. ; Mansi, Tommaso ; Khamzin, Svyatoslav ; Dokuchaev, Arsenii ; Solovyova, Olga ; Pueyo, Esther ; Sermesant, Maxime ; Sebastian, Rafael ; Morales, Hernán G. ; Camara, Oscar</creatorcontrib><description>Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12136438</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Benchmarks ; cardiac resynchronization therapy ; Cardiology and cardiovascular system ; Computer applications ; Computer Science ; Connectivity ; CRT-EPiggy19 challenge ; Data collection ; Datasets ; Electrophysiology ; Experimental data ; Finite element method ; Genetic algorithms ; Heart ; Heart attacks ; Heart failure ; Human health and pathology ; Life Sciences ; Magnetic resonance imaging ; Mathematical models ; Medical Imaging ; Meshless methods ; meshless model ; Methods ; Modeling and Simulation ; Optimization ; parameter optimisation ; Patients ; smoothed particle hydrodynamics ; Velocity distribution</subject><ispartof>Applied sciences, 2022-07, Vol.12 (13), p.6438</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</citedby><cites>FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</cites><orcidid>0000-0002-9229-9518 ; 0000-0003-2946-3044 ; 0000-0002-5125-6132 ; 0000-0002-2731-2739 ; 0000-0003-0253-4842 ; 0000-0002-6256-8350 ; 0000-0002-1960-407X ; 0000-0001-6746-5740 ; 0000-0002-3933-3561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2685970960/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2685970960?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03863600$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Albors, Carlos</creatorcontrib><creatorcontrib>Lluch, Èric</creatorcontrib><creatorcontrib>Gomez, Juan Francisco</creatorcontrib><creatorcontrib>Cedilnik, Nicolas</creatorcontrib><creatorcontrib>Mountris, Konstantinos A.</creatorcontrib><creatorcontrib>Mansi, Tommaso</creatorcontrib><creatorcontrib>Khamzin, Svyatoslav</creatorcontrib><creatorcontrib>Dokuchaev, Arsenii</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><creatorcontrib>Pueyo, Esther</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Sebastian, Rafael</creatorcontrib><creatorcontrib>Morales, Hernán G.</creatorcontrib><creatorcontrib>Camara, Oscar</creatorcontrib><title>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</title><title>Applied sciences</title><description>Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).</description><subject>Benchmarks</subject><subject>cardiac resynchronization therapy</subject><subject>Cardiology and cardiovascular system</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Connectivity</subject><subject>CRT-EPiggy19 challenge</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Electrophysiology</subject><subject>Experimental data</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Heart failure</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical Imaging</subject><subject>Meshless methods</subject><subject>meshless model</subject><subject>Methods</subject><subject>Modeling and Simulation</subject><subject>Optimization</subject><subject>parameter optimisation</subject><subject>Patients</subject><subject>smoothed particle hydrodynamics</subject><subject>Velocity distribution</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc9u1DAQxiMEElXpiRewxAmhFDtO_Oe4LFtaaVeVUDlbE2ey8ZLGwXahy4lXQOIJeRK8bIXKXGb0zaffjGaK4iWj55xr-hbmmVWMi5qrJ8VJRaUoec3k00f18-Isxh3NoRlXjJ4UPzcYhxFjJKsRbQp-HvbR-dFvnYWRbHyHo5u2xPdkCaFzYMlHjPvJDsFP7jsk5ydyM2CAef_7x693mDu3ED6TxQRjJkXyzaWBXLjJJSzzjFucEtlgGnwXiZvI6n7G4A5qHvceErwonvUwRjx7yKfFp4vVzfKyXF9_uFou1qXlWqXSatu3ta0k1L20konOslpTUbNWqY5rQRlrWm0bZQXSrPcoLFWVbFWvdAf8tLg6cjsPOzPnHSDsjQdn_go-bA2E5OyIRvKWKgDedY2ukbNWYgU9ZVrwhspGZNbrI2uA8T_U5WJtDhrlSnBB6VeWva-O3jn4L3cYk9n5u5CvFU0lVKMlzbtn15ujywYfY8D-H5ZRc3i3efRu_gfC4p8e</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Albors, Carlos</creator><creator>Lluch, Èric</creator><creator>Gomez, Juan Francisco</creator><creator>Cedilnik, Nicolas</creator><creator>Mountris, Konstantinos A.</creator><creator>Mansi, Tommaso</creator><creator>Khamzin, Svyatoslav</creator><creator>Dokuchaev, Arsenii</creator><creator>Solovyova, Olga</creator><creator>Pueyo, Esther</creator><creator>Sermesant, Maxime</creator><creator>Sebastian, Rafael</creator><creator>Morales, Hernán G.</creator><creator>Camara, Oscar</creator><general>MDPI AG</general><general>Multidisciplinary digital publishing institute (MDPI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9229-9518</orcidid><orcidid>https://orcid.org/0000-0003-2946-3044</orcidid><orcidid>https://orcid.org/0000-0002-5125-6132</orcidid><orcidid>https://orcid.org/0000-0002-2731-2739</orcidid><orcidid>https://orcid.org/0000-0003-0253-4842</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><orcidid>https://orcid.org/0000-0002-1960-407X</orcidid><orcidid>https://orcid.org/0000-0001-6746-5740</orcidid><orcidid>https://orcid.org/0000-0002-3933-3561</orcidid></search><sort><creationdate>20220701</creationdate><title>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</title><author>Albors, Carlos ; Lluch, Èric ; Gomez, Juan Francisco ; Cedilnik, Nicolas ; Mountris, Konstantinos A. ; Mansi, Tommaso ; Khamzin, Svyatoslav ; Dokuchaev, Arsenii ; Solovyova, Olga ; Pueyo, Esther ; Sermesant, Maxime ; Sebastian, Rafael ; Morales, Hernán G. ; Camara, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmarks</topic><topic>cardiac resynchronization therapy</topic><topic>Cardiology and cardiovascular system</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Connectivity</topic><topic>CRT-EPiggy19 challenge</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Electrophysiology</topic><topic>Experimental data</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Heart failure</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical Imaging</topic><topic>Meshless methods</topic><topic>meshless model</topic><topic>Methods</topic><topic>Modeling and Simulation</topic><topic>Optimization</topic><topic>parameter optimisation</topic><topic>Patients</topic><topic>smoothed particle hydrodynamics</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albors, Carlos</creatorcontrib><creatorcontrib>Lluch, Èric</creatorcontrib><creatorcontrib>Gomez, Juan Francisco</creatorcontrib><creatorcontrib>Cedilnik, Nicolas</creatorcontrib><creatorcontrib>Mountris, Konstantinos A.</creatorcontrib><creatorcontrib>Mansi, Tommaso</creatorcontrib><creatorcontrib>Khamzin, Svyatoslav</creatorcontrib><creatorcontrib>Dokuchaev, Arsenii</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><creatorcontrib>Pueyo, Esther</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Sebastian, Rafael</creatorcontrib><creatorcontrib>Morales, Hernán G.</creatorcontrib><creatorcontrib>Camara, Oscar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albors, Carlos</au><au>Lluch, Èric</au><au>Gomez, Juan Francisco</au><au>Cedilnik, Nicolas</au><au>Mountris, Konstantinos A.</au><au>Mansi, Tommaso</au><au>Khamzin, Svyatoslav</au><au>Dokuchaev, Arsenii</au><au>Solovyova, Olga</au><au>Pueyo, Esther</au><au>Sermesant, Maxime</au><au>Sebastian, Rafael</au><au>Morales, Hernán G.</au><au>Camara, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</atitle><jtitle>Applied sciences</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>13</issue><spage>6438</spage><pages>6438-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12136438</doi><orcidid>https://orcid.org/0000-0002-9229-9518</orcidid><orcidid>https://orcid.org/0000-0003-2946-3044</orcidid><orcidid>https://orcid.org/0000-0002-5125-6132</orcidid><orcidid>https://orcid.org/0000-0002-2731-2739</orcidid><orcidid>https://orcid.org/0000-0003-0253-4842</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><orcidid>https://orcid.org/0000-0002-1960-407X</orcidid><orcidid>https://orcid.org/0000-0001-6746-5740</orcidid><orcidid>https://orcid.org/0000-0002-3933-3561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-07, Vol.12 (13), p.6438 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_73b08aa3dd594e31b7e2af0196350756 |
source | Publicly Available Content (ProQuest) |
subjects | Benchmarks cardiac resynchronization therapy Cardiology and cardiovascular system Computer applications Computer Science Connectivity CRT-EPiggy19 challenge Data collection Datasets Electrophysiology Experimental data Finite element method Genetic algorithms Heart Heart attacks Heart failure Human health and pathology Life Sciences Magnetic resonance imaging Mathematical models Medical Imaging Meshless methods meshless model Methods Modeling and Simulation Optimization parameter optimisation Patients smoothed particle hydrodynamics Velocity distribution |
title | Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meshless%20Electrophysiological%20Modeling%20of%20Cardiac%20Resynchronization%20Therapy%E2%80%94Benchmark%20Analysis%20with%20Finite-Element%20Methods%20in%20Experimental%20Data&rft.jtitle=Applied%20sciences&rft.au=Albors,%20Carlos&rft.date=2022-07-01&rft.volume=12&rft.issue=13&rft.spage=6438&rft.pages=6438-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12136438&rft_dat=%3Cproquest_doaj_%3E2685970960%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685970960&rft_id=info:pmid/&rfr_iscdi=true |