Loading…

Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data

Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the fin...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-07, Vol.12 (13), p.6438
Main Authors: Albors, Carlos, Lluch, Èric, Gomez, Juan Francisco, Cedilnik, Nicolas, Mountris, Konstantinos A., Mansi, Tommaso, Khamzin, Svyatoslav, Dokuchaev, Arsenii, Solovyova, Olga, Pueyo, Esther, Sermesant, Maxime, Sebastian, Rafael, Morales, Hernán G., Camara, Oscar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3
cites cdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3
container_end_page
container_issue 13
container_start_page 6438
container_title Applied sciences
container_volume 12
creator Albors, Carlos
Lluch, Èric
Gomez, Juan Francisco
Cedilnik, Nicolas
Mountris, Konstantinos A.
Mansi, Tommaso
Khamzin, Svyatoslav
Dokuchaev, Arsenii
Solovyova, Olga
Pueyo, Esther
Sermesant, Maxime
Sebastian, Rafael
Morales, Hernán G.
Camara, Oscar
description Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).
doi_str_mv 10.3390/app12136438
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73b08aa3dd594e31b7e2af0196350756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73b08aa3dd594e31b7e2af0196350756</doaj_id><sourcerecordid>2685970960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</originalsourceid><addsrcrecordid>eNpVkc9u1DAQxiMEElXpiRewxAmhFDtO_Oe4LFtaaVeVUDlbE2ey8ZLGwXahy4lXQOIJeRK8bIXKXGb0zaffjGaK4iWj55xr-hbmmVWMi5qrJ8VJRaUoec3k00f18-Isxh3NoRlXjJ4UPzcYhxFjJKsRbQp-HvbR-dFvnYWRbHyHo5u2xPdkCaFzYMlHjPvJDsFP7jsk5ydyM2CAef_7x693mDu3ED6TxQRjJkXyzaWBXLjJJSzzjFucEtlgGnwXiZvI6n7G4A5qHvceErwonvUwRjx7yKfFp4vVzfKyXF9_uFou1qXlWqXSatu3ta0k1L20konOslpTUbNWqY5rQRlrWm0bZQXSrPcoLFWVbFWvdAf8tLg6cjsPOzPnHSDsjQdn_go-bA2E5OyIRvKWKgDedY2ukbNWYgU9ZVrwhspGZNbrI2uA8T_U5WJtDhrlSnBB6VeWva-O3jn4L3cYk9n5u5CvFU0lVKMlzbtn15ujywYfY8D-H5ZRc3i3efRu_gfC4p8e</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685970960</pqid></control><display><type>article</type><title>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</title><source>Publicly Available Content (ProQuest)</source><creator>Albors, Carlos ; Lluch, Èric ; Gomez, Juan Francisco ; Cedilnik, Nicolas ; Mountris, Konstantinos A. ; Mansi, Tommaso ; Khamzin, Svyatoslav ; Dokuchaev, Arsenii ; Solovyova, Olga ; Pueyo, Esther ; Sermesant, Maxime ; Sebastian, Rafael ; Morales, Hernán G. ; Camara, Oscar</creator><creatorcontrib>Albors, Carlos ; Lluch, Èric ; Gomez, Juan Francisco ; Cedilnik, Nicolas ; Mountris, Konstantinos A. ; Mansi, Tommaso ; Khamzin, Svyatoslav ; Dokuchaev, Arsenii ; Solovyova, Olga ; Pueyo, Esther ; Sermesant, Maxime ; Sebastian, Rafael ; Morales, Hernán G. ; Camara, Oscar</creatorcontrib><description>Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12136438</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Benchmarks ; cardiac resynchronization therapy ; Cardiology and cardiovascular system ; Computer applications ; Computer Science ; Connectivity ; CRT-EPiggy19 challenge ; Data collection ; Datasets ; Electrophysiology ; Experimental data ; Finite element method ; Genetic algorithms ; Heart ; Heart attacks ; Heart failure ; Human health and pathology ; Life Sciences ; Magnetic resonance imaging ; Mathematical models ; Medical Imaging ; Meshless methods ; meshless model ; Methods ; Modeling and Simulation ; Optimization ; parameter optimisation ; Patients ; smoothed particle hydrodynamics ; Velocity distribution</subject><ispartof>Applied sciences, 2022-07, Vol.12 (13), p.6438</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</citedby><cites>FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</cites><orcidid>0000-0002-9229-9518 ; 0000-0003-2946-3044 ; 0000-0002-5125-6132 ; 0000-0002-2731-2739 ; 0000-0003-0253-4842 ; 0000-0002-6256-8350 ; 0000-0002-1960-407X ; 0000-0001-6746-5740 ; 0000-0002-3933-3561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2685970960/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2685970960?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03863600$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Albors, Carlos</creatorcontrib><creatorcontrib>Lluch, Èric</creatorcontrib><creatorcontrib>Gomez, Juan Francisco</creatorcontrib><creatorcontrib>Cedilnik, Nicolas</creatorcontrib><creatorcontrib>Mountris, Konstantinos A.</creatorcontrib><creatorcontrib>Mansi, Tommaso</creatorcontrib><creatorcontrib>Khamzin, Svyatoslav</creatorcontrib><creatorcontrib>Dokuchaev, Arsenii</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><creatorcontrib>Pueyo, Esther</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Sebastian, Rafael</creatorcontrib><creatorcontrib>Morales, Hernán G.</creatorcontrib><creatorcontrib>Camara, Oscar</creatorcontrib><title>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</title><title>Applied sciences</title><description>Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).</description><subject>Benchmarks</subject><subject>cardiac resynchronization therapy</subject><subject>Cardiology and cardiovascular system</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Connectivity</subject><subject>CRT-EPiggy19 challenge</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Electrophysiology</subject><subject>Experimental data</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Heart failure</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical Imaging</subject><subject>Meshless methods</subject><subject>meshless model</subject><subject>Methods</subject><subject>Modeling and Simulation</subject><subject>Optimization</subject><subject>parameter optimisation</subject><subject>Patients</subject><subject>smoothed particle hydrodynamics</subject><subject>Velocity distribution</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc9u1DAQxiMEElXpiRewxAmhFDtO_Oe4LFtaaVeVUDlbE2ey8ZLGwXahy4lXQOIJeRK8bIXKXGb0zaffjGaK4iWj55xr-hbmmVWMi5qrJ8VJRaUoec3k00f18-Isxh3NoRlXjJ4UPzcYhxFjJKsRbQp-HvbR-dFvnYWRbHyHo5u2xPdkCaFzYMlHjPvJDsFP7jsk5ydyM2CAef_7x693mDu3ED6TxQRjJkXyzaWBXLjJJSzzjFucEtlgGnwXiZvI6n7G4A5qHvceErwonvUwRjx7yKfFp4vVzfKyXF9_uFou1qXlWqXSatu3ta0k1L20konOslpTUbNWqY5rQRlrWm0bZQXSrPcoLFWVbFWvdAf8tLg6cjsPOzPnHSDsjQdn_go-bA2E5OyIRvKWKgDedY2ukbNWYgU9ZVrwhspGZNbrI2uA8T_U5WJtDhrlSnBB6VeWva-O3jn4L3cYk9n5u5CvFU0lVKMlzbtn15ujywYfY8D-H5ZRc3i3efRu_gfC4p8e</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Albors, Carlos</creator><creator>Lluch, Èric</creator><creator>Gomez, Juan Francisco</creator><creator>Cedilnik, Nicolas</creator><creator>Mountris, Konstantinos A.</creator><creator>Mansi, Tommaso</creator><creator>Khamzin, Svyatoslav</creator><creator>Dokuchaev, Arsenii</creator><creator>Solovyova, Olga</creator><creator>Pueyo, Esther</creator><creator>Sermesant, Maxime</creator><creator>Sebastian, Rafael</creator><creator>Morales, Hernán G.</creator><creator>Camara, Oscar</creator><general>MDPI AG</general><general>Multidisciplinary digital publishing institute (MDPI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9229-9518</orcidid><orcidid>https://orcid.org/0000-0003-2946-3044</orcidid><orcidid>https://orcid.org/0000-0002-5125-6132</orcidid><orcidid>https://orcid.org/0000-0002-2731-2739</orcidid><orcidid>https://orcid.org/0000-0003-0253-4842</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><orcidid>https://orcid.org/0000-0002-1960-407X</orcidid><orcidid>https://orcid.org/0000-0001-6746-5740</orcidid><orcidid>https://orcid.org/0000-0002-3933-3561</orcidid></search><sort><creationdate>20220701</creationdate><title>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</title><author>Albors, Carlos ; Lluch, Èric ; Gomez, Juan Francisco ; Cedilnik, Nicolas ; Mountris, Konstantinos A. ; Mansi, Tommaso ; Khamzin, Svyatoslav ; Dokuchaev, Arsenii ; Solovyova, Olga ; Pueyo, Esther ; Sermesant, Maxime ; Sebastian, Rafael ; Morales, Hernán G. ; Camara, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmarks</topic><topic>cardiac resynchronization therapy</topic><topic>Cardiology and cardiovascular system</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Connectivity</topic><topic>CRT-EPiggy19 challenge</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Electrophysiology</topic><topic>Experimental data</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Heart failure</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical Imaging</topic><topic>Meshless methods</topic><topic>meshless model</topic><topic>Methods</topic><topic>Modeling and Simulation</topic><topic>Optimization</topic><topic>parameter optimisation</topic><topic>Patients</topic><topic>smoothed particle hydrodynamics</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albors, Carlos</creatorcontrib><creatorcontrib>Lluch, Èric</creatorcontrib><creatorcontrib>Gomez, Juan Francisco</creatorcontrib><creatorcontrib>Cedilnik, Nicolas</creatorcontrib><creatorcontrib>Mountris, Konstantinos A.</creatorcontrib><creatorcontrib>Mansi, Tommaso</creatorcontrib><creatorcontrib>Khamzin, Svyatoslav</creatorcontrib><creatorcontrib>Dokuchaev, Arsenii</creatorcontrib><creatorcontrib>Solovyova, Olga</creatorcontrib><creatorcontrib>Pueyo, Esther</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Sebastian, Rafael</creatorcontrib><creatorcontrib>Morales, Hernán G.</creatorcontrib><creatorcontrib>Camara, Oscar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albors, Carlos</au><au>Lluch, Èric</au><au>Gomez, Juan Francisco</au><au>Cedilnik, Nicolas</au><au>Mountris, Konstantinos A.</au><au>Mansi, Tommaso</au><au>Khamzin, Svyatoslav</au><au>Dokuchaev, Arsenii</au><au>Solovyova, Olga</au><au>Pueyo, Esther</au><au>Sermesant, Maxime</au><au>Sebastian, Rafael</au><au>Morales, Hernán G.</au><au>Camara, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data</atitle><jtitle>Applied sciences</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>13</issue><spage>6438</spage><pages>6438-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12136438</doi><orcidid>https://orcid.org/0000-0002-9229-9518</orcidid><orcidid>https://orcid.org/0000-0003-2946-3044</orcidid><orcidid>https://orcid.org/0000-0002-5125-6132</orcidid><orcidid>https://orcid.org/0000-0002-2731-2739</orcidid><orcidid>https://orcid.org/0000-0003-0253-4842</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><orcidid>https://orcid.org/0000-0002-1960-407X</orcidid><orcidid>https://orcid.org/0000-0001-6746-5740</orcidid><orcidid>https://orcid.org/0000-0002-3933-3561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-07, Vol.12 (13), p.6438
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_73b08aa3dd594e31b7e2af0196350756
source Publicly Available Content (ProQuest)
subjects Benchmarks
cardiac resynchronization therapy
Cardiology and cardiovascular system
Computer applications
Computer Science
Connectivity
CRT-EPiggy19 challenge
Data collection
Datasets
Electrophysiology
Experimental data
Finite element method
Genetic algorithms
Heart
Heart attacks
Heart failure
Human health and pathology
Life Sciences
Magnetic resonance imaging
Mathematical models
Medical Imaging
Meshless methods
meshless model
Methods
Modeling and Simulation
Optimization
parameter optimisation
Patients
smoothed particle hydrodynamics
Velocity distribution
title Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meshless%20Electrophysiological%20Modeling%20of%20Cardiac%20Resynchronization%20Therapy%E2%80%94Benchmark%20Analysis%20with%20Finite-Element%20Methods%20in%20Experimental%20Data&rft.jtitle=Applied%20sciences&rft.au=Albors,%20Carlos&rft.date=2022-07-01&rft.volume=12&rft.issue=13&rft.spage=6438&rft.pages=6438-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12136438&rft_dat=%3Cproquest_doaj_%3E2685970960%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-c9cfb4c27a4f7c716dc1490641b88d3960115b9c58c6e0064fe6c0827b8f89da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685970960&rft_id=info:pmid/&rfr_iscdi=true