Loading…

The Unlocking Process Leading to the 2016 Central Italy Seismic Sequence

Approximately 23,000 well‐located earthquakes from 2009 to 2016 are used as templates to recover seismic activity preceding the 2016 Central Italy seismic sequence. The resulting spatiotemporal pattern is analyzed by additional ∼91,000 newly detected events. In the 8 years before the sequence onset,...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2023-03, Vol.50 (5), p.n/a
Main Authors: Sugan, M., Campanella, S., Chiaraluce, L., Michele, M., Vuan, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3610-aa7dc3cc23f3911b05fa584c54819be0129903058bfdba52cb453fbdf7bfdf613
cites cdi_FETCH-LOGICAL-c3610-aa7dc3cc23f3911b05fa584c54819be0129903058bfdba52cb453fbdf7bfdf613
container_end_page n/a
container_issue 5
container_start_page
container_title Geophysical research letters
container_volume 50
creator Sugan, M.
Campanella, S.
Chiaraluce, L.
Michele, M.
Vuan, A.
description Approximately 23,000 well‐located earthquakes from 2009 to 2016 are used as templates to recover seismic activity preceding the 2016 Central Italy seismic sequence. The resulting spatiotemporal pattern is analyzed by additional ∼91,000 newly detected events. In the 8 years before the sequence onset, seismicity (ML ≤ 3.7) develops at the hangingwall of the 2016 normal faults and along a sub‐horizontal shear zone, bounding the active extensional system at depth. This activity, mainly organized in foreshock‐mainshock and swarm‐like clusters, migrates toward the nucleation area of the first Mw 6.0 mainshock of the sequence (24th of August in Amatrice). We propose an unlocking process based on variable temporal clustering of the seismicity, including repeaters, identifying fault portions with different degrees of coupling. Such a progressive localization of the seismic activity at the fault edges induces a weakening of the locked patch of the Amatrice mainshock. Plain Language Summary We exploit a high‐resolution seismic catalog to describe the activity preceding the 2016 Central Italy sequence. Newly retrieved events are analyzed in space and time to characterize the earthquake preparatory phase leading to the first mainshock of the sequence. Our 8‐year‐long observations show that most seismic activity involves structures surrounding the nucleation and rupture zone. Interesting seismicity patterns are found along an almost horizontal discontinuity below the upper crustal normal faults and at their northern and southern edges. We highlight migrations, clustering, and progressive seismicity localization close to the first mainshock of the sequence, unveiling a complex preparatory phase. Key Points Eight‐year seismic data scrutinized by template matching provide ∼4 times more events before the Mw 6.0 Amatrice mainshock Fore‐mainshocks and swarm‐like clusters persisted before the 2016 Amatrice mainshock at the northern and southern fault edges An unlocking process by progressive seismicity localization weakened the 2016 main fault volume peripheral area
doi_str_mv 10.1029/2022GL101838
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73bdf126f96a4b0e851c749084504f98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73bdf126f96a4b0e851c749084504f98</doaj_id><sourcerecordid>3092034740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3610-aa7dc3cc23f3911b05fa584c54819be0129903058bfdba52cb453fbdf7bfdf613</originalsourceid><addsrcrecordid>eNp9kVtLwzAUx4MoOKdvfoCCr05Pbm3yKEO3QUHR7TmkaTI7u2YmFdm3N7MiPvl0LvzO_9wQusRwg4HIWwKEzEoMWFBxhEZYMjYRAMUxGgHI5JMiP0VnMW4AgALFIzRfvtps1bXevDXdOnsK3tgYs9Lq-hD3PusTQADn2dR2fdBttuh1u89ebBO3jUn2_cN2xp6jE6fbaC9-7BitHu6X0_mkfJwtpnflxNAcw0TrojbUGEIdlRhXwJ3mghnOBJaVBUykTKNxUbm60pyYinHqqtoVKeFyTMdoMejWXm_ULjRbHfbK60Z9J3xYKx36xrRWFTTVYZI7mWtWgRUcm4JJEIwDc1IkratBaxd82iL2auM_QpfGVxQkAcoKBom6HigTfIzBut-uGNTh7urv3RNOBvyzae3-X1bNnsucs_SLL1GTgJs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092034740</pqid></control><display><type>article</type><title>The Unlocking Process Leading to the 2016 Central Italy Seismic Sequence</title><source>Wiley Online Library</source><source>Wiley Open Access Journals</source><creator>Sugan, M. ; Campanella, S. ; Chiaraluce, L. ; Michele, M. ; Vuan, A.</creator><creatorcontrib>Sugan, M. ; Campanella, S. ; Chiaraluce, L. ; Michele, M. ; Vuan, A.</creatorcontrib><description>Approximately 23,000 well‐located earthquakes from 2009 to 2016 are used as templates to recover seismic activity preceding the 2016 Central Italy seismic sequence. The resulting spatiotemporal pattern is analyzed by additional ∼91,000 newly detected events. In the 8 years before the sequence onset, seismicity (ML ≤ 3.7) develops at the hangingwall of the 2016 normal faults and along a sub‐horizontal shear zone, bounding the active extensional system at depth. This activity, mainly organized in foreshock‐mainshock and swarm‐like clusters, migrates toward the nucleation area of the first Mw 6.0 mainshock of the sequence (24th of August in Amatrice). We propose an unlocking process based on variable temporal clustering of the seismicity, including repeaters, identifying fault portions with different degrees of coupling. Such a progressive localization of the seismic activity at the fault edges induces a weakening of the locked patch of the Amatrice mainshock. Plain Language Summary We exploit a high‐resolution seismic catalog to describe the activity preceding the 2016 Central Italy sequence. Newly retrieved events are analyzed in space and time to characterize the earthquake preparatory phase leading to the first mainshock of the sequence. Our 8‐year‐long observations show that most seismic activity involves structures surrounding the nucleation and rupture zone. Interesting seismicity patterns are found along an almost horizontal discontinuity below the upper crustal normal faults and at their northern and southern edges. We highlight migrations, clustering, and progressive seismicity localization close to the first mainshock of the sequence, unveiling a complex preparatory phase. Key Points Eight‐year seismic data scrutinized by template matching provide ∼4 times more events before the Mw 6.0 Amatrice mainshock Fore‐mainshocks and swarm‐like clusters persisted before the 2016 Amatrice mainshock at the northern and southern fault edges An unlocking process by progressive seismicity localization weakened the 2016 main fault volume peripheral area</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL101838</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aftershocks ; Clustering ; Earthquakes ; Fault detection ; Fault lines ; foreshocks ; Localization ; Nucleation ; Pattern analysis ; Seismic activity ; Seismicity ; seismicity localization ; Shear zone ; slow slip ; swarms ; template matching ; Templates ; unlocking</subject><ispartof>Geophysical research letters, 2023-03, Vol.50 (5), p.n/a</ispartof><rights>2023. The Authors.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3610-aa7dc3cc23f3911b05fa584c54819be0129903058bfdba52cb453fbdf7bfdf613</citedby><cites>FETCH-LOGICAL-c3610-aa7dc3cc23f3911b05fa584c54819be0129903058bfdba52cb453fbdf7bfdf613</cites><orcidid>0000-0002-1247-3193 ; 0000-0002-9697-6504 ; 0000-0001-5536-1717 ; 0000-0001-9039-3503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL101838$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL101838$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11493,11541,27901,27902,46027,46443,46451,46867</link.rule.ids></links><search><creatorcontrib>Sugan, M.</creatorcontrib><creatorcontrib>Campanella, S.</creatorcontrib><creatorcontrib>Chiaraluce, L.</creatorcontrib><creatorcontrib>Michele, M.</creatorcontrib><creatorcontrib>Vuan, A.</creatorcontrib><title>The Unlocking Process Leading to the 2016 Central Italy Seismic Sequence</title><title>Geophysical research letters</title><description>Approximately 23,000 well‐located earthquakes from 2009 to 2016 are used as templates to recover seismic activity preceding the 2016 Central Italy seismic sequence. The resulting spatiotemporal pattern is analyzed by additional ∼91,000 newly detected events. In the 8 years before the sequence onset, seismicity (ML ≤ 3.7) develops at the hangingwall of the 2016 normal faults and along a sub‐horizontal shear zone, bounding the active extensional system at depth. This activity, mainly organized in foreshock‐mainshock and swarm‐like clusters, migrates toward the nucleation area of the first Mw 6.0 mainshock of the sequence (24th of August in Amatrice). We propose an unlocking process based on variable temporal clustering of the seismicity, including repeaters, identifying fault portions with different degrees of coupling. Such a progressive localization of the seismic activity at the fault edges induces a weakening of the locked patch of the Amatrice mainshock. Plain Language Summary We exploit a high‐resolution seismic catalog to describe the activity preceding the 2016 Central Italy sequence. Newly retrieved events are analyzed in space and time to characterize the earthquake preparatory phase leading to the first mainshock of the sequence. Our 8‐year‐long observations show that most seismic activity involves structures surrounding the nucleation and rupture zone. Interesting seismicity patterns are found along an almost horizontal discontinuity below the upper crustal normal faults and at their northern and southern edges. We highlight migrations, clustering, and progressive seismicity localization close to the first mainshock of the sequence, unveiling a complex preparatory phase. Key Points Eight‐year seismic data scrutinized by template matching provide ∼4 times more events before the Mw 6.0 Amatrice mainshock Fore‐mainshocks and swarm‐like clusters persisted before the 2016 Amatrice mainshock at the northern and southern fault edges An unlocking process by progressive seismicity localization weakened the 2016 main fault volume peripheral area</description><subject>Aftershocks</subject><subject>Clustering</subject><subject>Earthquakes</subject><subject>Fault detection</subject><subject>Fault lines</subject><subject>foreshocks</subject><subject>Localization</subject><subject>Nucleation</subject><subject>Pattern analysis</subject><subject>Seismic activity</subject><subject>Seismicity</subject><subject>seismicity localization</subject><subject>Shear zone</subject><subject>slow slip</subject><subject>swarms</subject><subject>template matching</subject><subject>Templates</subject><subject>unlocking</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kVtLwzAUx4MoOKdvfoCCr05Pbm3yKEO3QUHR7TmkaTI7u2YmFdm3N7MiPvl0LvzO_9wQusRwg4HIWwKEzEoMWFBxhEZYMjYRAMUxGgHI5JMiP0VnMW4AgALFIzRfvtps1bXevDXdOnsK3tgYs9Lq-hD3PusTQADn2dR2fdBttuh1u89ebBO3jUn2_cN2xp6jE6fbaC9-7BitHu6X0_mkfJwtpnflxNAcw0TrojbUGEIdlRhXwJ3mghnOBJaVBUykTKNxUbm60pyYinHqqtoVKeFyTMdoMejWXm_ULjRbHfbK60Z9J3xYKx36xrRWFTTVYZI7mWtWgRUcm4JJEIwDc1IkratBaxd82iL2auM_QpfGVxQkAcoKBom6HigTfIzBut-uGNTh7urv3RNOBvyzae3-X1bNnsucs_SLL1GTgJs</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Sugan, M.</creator><creator>Campanella, S.</creator><creator>Chiaraluce, L.</creator><creator>Michele, M.</creator><creator>Vuan, A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1247-3193</orcidid><orcidid>https://orcid.org/0000-0002-9697-6504</orcidid><orcidid>https://orcid.org/0000-0001-5536-1717</orcidid><orcidid>https://orcid.org/0000-0001-9039-3503</orcidid></search><sort><creationdate>20230316</creationdate><title>The Unlocking Process Leading to the 2016 Central Italy Seismic Sequence</title><author>Sugan, M. ; Campanella, S. ; Chiaraluce, L. ; Michele, M. ; Vuan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3610-aa7dc3cc23f3911b05fa584c54819be0129903058bfdba52cb453fbdf7bfdf613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aftershocks</topic><topic>Clustering</topic><topic>Earthquakes</topic><topic>Fault detection</topic><topic>Fault lines</topic><topic>foreshocks</topic><topic>Localization</topic><topic>Nucleation</topic><topic>Pattern analysis</topic><topic>Seismic activity</topic><topic>Seismicity</topic><topic>seismicity localization</topic><topic>Shear zone</topic><topic>slow slip</topic><topic>swarms</topic><topic>template matching</topic><topic>Templates</topic><topic>unlocking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugan, M.</creatorcontrib><creatorcontrib>Campanella, S.</creatorcontrib><creatorcontrib>Chiaraluce, L.</creatorcontrib><creatorcontrib>Michele, M.</creatorcontrib><creatorcontrib>Vuan, A.</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugan, M.</au><au>Campanella, S.</au><au>Chiaraluce, L.</au><au>Michele, M.</au><au>Vuan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Unlocking Process Leading to the 2016 Central Italy Seismic Sequence</atitle><jtitle>Geophysical research letters</jtitle><date>2023-03-16</date><risdate>2023</risdate><volume>50</volume><issue>5</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Approximately 23,000 well‐located earthquakes from 2009 to 2016 are used as templates to recover seismic activity preceding the 2016 Central Italy seismic sequence. The resulting spatiotemporal pattern is analyzed by additional ∼91,000 newly detected events. In the 8 years before the sequence onset, seismicity (ML ≤ 3.7) develops at the hangingwall of the 2016 normal faults and along a sub‐horizontal shear zone, bounding the active extensional system at depth. This activity, mainly organized in foreshock‐mainshock and swarm‐like clusters, migrates toward the nucleation area of the first Mw 6.0 mainshock of the sequence (24th of August in Amatrice). We propose an unlocking process based on variable temporal clustering of the seismicity, including repeaters, identifying fault portions with different degrees of coupling. Such a progressive localization of the seismic activity at the fault edges induces a weakening of the locked patch of the Amatrice mainshock. Plain Language Summary We exploit a high‐resolution seismic catalog to describe the activity preceding the 2016 Central Italy sequence. Newly retrieved events are analyzed in space and time to characterize the earthquake preparatory phase leading to the first mainshock of the sequence. Our 8‐year‐long observations show that most seismic activity involves structures surrounding the nucleation and rupture zone. Interesting seismicity patterns are found along an almost horizontal discontinuity below the upper crustal normal faults and at their northern and southern edges. We highlight migrations, clustering, and progressive seismicity localization close to the first mainshock of the sequence, unveiling a complex preparatory phase. Key Points Eight‐year seismic data scrutinized by template matching provide ∼4 times more events before the Mw 6.0 Amatrice mainshock Fore‐mainshocks and swarm‐like clusters persisted before the 2016 Amatrice mainshock at the northern and southern fault edges An unlocking process by progressive seismicity localization weakened the 2016 main fault volume peripheral area</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022GL101838</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1247-3193</orcidid><orcidid>https://orcid.org/0000-0002-9697-6504</orcidid><orcidid>https://orcid.org/0000-0001-5536-1717</orcidid><orcidid>https://orcid.org/0000-0001-9039-3503</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2023-03, Vol.50 (5), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_73bdf126f96a4b0e851c749084504f98
source Wiley Online Library; Wiley Open Access Journals
subjects Aftershocks
Clustering
Earthquakes
Fault detection
Fault lines
foreshocks
Localization
Nucleation
Pattern analysis
Seismic activity
Seismicity
seismicity localization
Shear zone
slow slip
swarms
template matching
Templates
unlocking
title The Unlocking Process Leading to the 2016 Central Italy Seismic Sequence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Unlocking%20Process%20Leading%20to%20the%202016%20Central%20Italy%20Seismic%20Sequence&rft.jtitle=Geophysical%20research%20letters&rft.au=Sugan,%20M.&rft.date=2023-03-16&rft.volume=50&rft.issue=5&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL101838&rft_dat=%3Cproquest_doaj_%3E3092034740%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3610-aa7dc3cc23f3911b05fa584c54819be0129903058bfdba52cb453fbdf7bfdf613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092034740&rft_id=info:pmid/&rfr_iscdi=true