Loading…
Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries
We report the interfacial study of a silicon/carbon nanofiber/graphene composite as a potentially high-performance anode for rechargeable lithium-ion batteries (LIBs). Silicon nanoparticle (Si)/carbon nanofiber (CNF)/reduced graphene oxide (rGO) composite films were prepared by simple physical filtr...
Saved in:
Published in: | Scientific reports 2021-01, Vol.11 (1), p.1283-1283, Article 1283 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the interfacial study of a silicon/carbon nanofiber/graphene composite as a potentially high-performance anode for rechargeable lithium-ion batteries (LIBs). Silicon nanoparticle (Si)/carbon nanofiber (CNF)/reduced graphene oxide (rGO) composite films were prepared by simple physical filtration and an environmentally-friendly thermal reduction treatment. The films were used as high-performance anode materials for self-supporting, binder-free LIBs. Reducing graphene oxide improves the electron conductivity and adjusts to the volume change during repeated charge/discharge processes. CNFs can help maintain the structural stability and prevent the peeling off of silicon nanoparticles from the electrodes. When the fabricated Si/CNF/rGO composites were used as anodes of LIBs, the initial specific capacity was measured to be 1894.54 mAh/g at a current density of 0.1 A/g. After 100 cycles, the reversible specific capacity was maintained at 964.68 mAh/g, and the coulombic efficiency could reach 93.8% at the same current density. The Si/CNF/rGO composite electrode exhibited a higher specific capacity and cycle stability than an Si/rGO composite electrode. The Si/CNF/rGO composite films can effectively accommodate and buffer changes in the volume of silicon nanoparticles, form a stable solid–electrolyte interface, improve the conductivity of the electrode, and provide a fast and efficient channel for electron and ion transport. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-79205-1 |