Loading…

Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries

We report the interfacial study of a silicon/carbon nanofiber/graphene composite as a potentially high-performance anode for rechargeable lithium-ion batteries (LIBs). Silicon nanoparticle (Si)/carbon nanofiber (CNF)/reduced graphene oxide (rGO) composite films were prepared by simple physical filtr...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-01, Vol.11 (1), p.1283-1283, Article 1283
Main Authors: Cong, Ruye, Choi, Jin-Yeong, Song, Ju-Beom, Jo, Minsang, Lee, Hochun, Lee, Chang-Seop
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the interfacial study of a silicon/carbon nanofiber/graphene composite as a potentially high-performance anode for rechargeable lithium-ion batteries (LIBs). Silicon nanoparticle (Si)/carbon nanofiber (CNF)/reduced graphene oxide (rGO) composite films were prepared by simple physical filtration and an environmentally-friendly thermal reduction treatment. The films were used as high-performance anode materials for self-supporting, binder-free LIBs. Reducing graphene oxide improves the electron conductivity and adjusts to the volume change during repeated charge/discharge processes. CNFs can help maintain the structural stability and prevent the peeling off of silicon nanoparticles from the electrodes. When the fabricated Si/CNF/rGO composites were used as anodes of LIBs, the initial specific capacity was measured to be 1894.54 mAh/g at a current density of 0.1 A/g. After 100 cycles, the reversible specific capacity was maintained at 964.68 mAh/g, and the coulombic efficiency could reach 93.8% at the same current density. The Si/CNF/rGO composite electrode exhibited a higher specific capacity and cycle stability than an Si/rGO composite electrode. The Si/CNF/rGO composite films can effectively accommodate and buffer changes in the volume of silicon nanoparticles, form a stable solid–electrolyte interface, improve the conductivity of the electrode, and provide a fast and efficient channel for electron and ion transport.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-79205-1