Loading…
Synthesis and Optoelectronic Properties of New Methoxy-Substituted Diketopyrrolopyrrole Polymers
The introduction of functional groups with varying electron-donating/-withdrawing properties at the β-position of diketopyrrolopyrrole (DPP) has been shown to affect the optoelectronic properties of the polymers. We report the synthesis of a new diketopyrrolopyrrole monomer wherein a strong electron...
Saved in:
Published in: | ACS omega 2019-05, Vol.4 (5), p.9427-9433 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The introduction of functional groups with varying electron-donating/-withdrawing properties at the β-position of diketopyrrolopyrrole (DPP) has been shown to affect the optoelectronic properties of the polymers. We report the synthesis of a new diketopyrrolopyrrole monomer wherein a strong electron-donating substituent, a methoxy group, was incorporated at the β-position in an effort to modulate polymer properties. Homopolymers and co-polymers of the new β-methoxy DPP and nonderivatized DPP were synthesized, and their properties were measured by cyclic voltammetry and UV–vis–near-infrared. Density functional theory computations also were employed to predict the degree of planarity of β-methoxy oligomers to probe the significance of the newly introduced S–O conformational lock. The combined experimental and computational results showed a reduction in the gap between highest occupied molecular orbital/lowest unoccupied molecular orbital levels, a redshift toward the near-infrared region, and an increased planarity in the β-methoxy polymers. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.9b01125 |