Loading…
affyPara - a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data
Markus Schmidberger, Esmeralda Vicedo and Ulrich MansmannDivision of Biometrics and Bioinformatics, IBE, University of Munich, 81377 Munich, Germany. AbstractMicroarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one...
Saved in:
Published in: | Bioinformatics and biology insights 2009, Vol.2009 (3), p.BBI.S3060-87 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3700-fc6314f2965c43b5828b7eb78e4174d8e0abc7b370c0182b322d49d85d6210c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c3700-fc6314f2965c43b5828b7eb78e4174d8e0abc7b370c0182b322d49d85d6210c73 |
container_end_page | 87 |
container_issue | 3 |
container_start_page | BBI.S3060 |
container_title | Bioinformatics and biology insights |
container_volume | 2009 |
creator | Schmidberger, Markus Vicedo, Esmeralda Mansmann, Ulrich |
description | Markus Schmidberger, Esmeralda Vicedo and Ulrich MansmannDivision of Biometrics and Bioinformatics, IBE, University of Munich, 81377 Munich, Germany. AbstractMicroarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule's prediction quality honestly. This paper proposes the new Bioconductor package affyPara for parallelized preprocessing of Affymetrix microarray data. Partition of data can be applied on arrays and parallelization of algorithms is a straightforward consequence. The partition of data and distribution to several nodes solves the main memory problems and accelerates preprocessing by up to the factor 20 for 200 or more arrays. affyPara is a free and open source package, under GPL license, available form the Bioconductor project at www.bioconductor.org. A user guide and examples are provided with the package. |
doi_str_mv | 10.4137/BBI.S3060 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73dfc37aa1df407aa1a9caf2057314d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A295551690</galeid><sage_id>10.4137_BBI.S3060</sage_id><doaj_id>oai_doaj_org_article_73dfc37aa1df407aa1a9caf2057314d6</doaj_id><sourcerecordid>A295551690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3700-fc6314f2965c43b5828b7eb78e4174d8e0abc7b370c0182b322d49d85d6210c73</originalsourceid><addsrcrecordid>eNptUU1r3DAQNaGBpmkP_Qc6FXrwVrIsyb4EdtOkXUjJQtKzGOvD0cZehZED3f76KOtQ2hJ0mGH05s3Me0XxkdFFzbj6slqtFzecSnpUnDCmVNnyqnrzV_62eJfSllLJGiVPigDe7zeAQEoCZBWiiTv7aKaIZAPmHnpH_CFHGAY3hN_Okg26B4zGpRR2PVkOfcQw3Y2JRE-WmW50E4Zf5EcwGAER9uQrTPC-OPYwJPfhJZ4WPy8vbs-_l1fX39bny6vScEVp6Y3krPZVK4WpeSeaqumU61TjaqZq2zgKnVFdxhrKmqrLJ9m6tY2wsmLUKH5arGdeG2GrHzCMgHsdIehDIWKvAadgBqcVtz5PBWDW1_Q5QmvAV1SovIOVmWsxc_WQ4WHn44Rg8rNuDFkp50OuL6tWCMFkS3PD57khn54SOv9nAUb1s0E6G6QPBmXspxmbssp6Gx9xl3V5FXg2A4fQOZwgvSwA_1z336cBbeKomRCSPwE_t6ZE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>affyPara - a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data</title><source>SAGE Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Schmidberger, Markus ; Vicedo, Esmeralda ; Mansmann, Ulrich</creator><creatorcontrib>Schmidberger, Markus ; Vicedo, Esmeralda ; Mansmann, Ulrich</creatorcontrib><description>Markus Schmidberger, Esmeralda Vicedo and Ulrich MansmannDivision of Biometrics and Bioinformatics, IBE, University of Munich, 81377 Munich, Germany. AbstractMicroarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule's prediction quality honestly. This paper proposes the new Bioconductor package affyPara for parallelized preprocessing of Affymetrix microarray data. Partition of data can be applied on arrays and parallelization of algorithms is a straightforward consequence. The partition of data and distribution to several nodes solves the main memory problems and accelerates preprocessing by up to the factor 20 for 200 or more arrays. affyPara is a free and open source package, under GPL license, available form the Bioconductor project at www.bioconductor.org. A user guide and examples are provided with the package.</description><identifier>ISSN: 1177-9322</identifier><identifier>EISSN: 1177-9322</identifier><identifier>DOI: 10.4137/BBI.S3060</identifier><language>eng</language><publisher>London, England: SAGE Publishing</publisher><subject>Algorithms</subject><ispartof>Bioinformatics and biology insights, 2009, Vol.2009 (3), p.BBI.S3060-87</ispartof><rights>2009 SAGE Publications.</rights><rights>COPYRIGHT 2009 Sage Publications Ltd. (UK)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3700-fc6314f2965c43b5828b7eb78e4174d8e0abc7b370c0182b322d49d85d6210c73</citedby><cites>FETCH-LOGICAL-c3700-fc6314f2965c43b5828b7eb78e4174d8e0abc7b370c0182b322d49d85d6210c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.4137/BBI.S3060$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.4137/BBI.S3060$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,21965,27852,27922,27923,27924,44944,45332</link.rule.ids></links><search><creatorcontrib>Schmidberger, Markus</creatorcontrib><creatorcontrib>Vicedo, Esmeralda</creatorcontrib><creatorcontrib>Mansmann, Ulrich</creatorcontrib><title>affyPara - a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data</title><title>Bioinformatics and biology insights</title><description>Markus Schmidberger, Esmeralda Vicedo and Ulrich MansmannDivision of Biometrics and Bioinformatics, IBE, University of Munich, 81377 Munich, Germany. AbstractMicroarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule's prediction quality honestly. This paper proposes the new Bioconductor package affyPara for parallelized preprocessing of Affymetrix microarray data. Partition of data can be applied on arrays and parallelization of algorithms is a straightforward consequence. The partition of data and distribution to several nodes solves the main memory problems and accelerates preprocessing by up to the factor 20 for 200 or more arrays. affyPara is a free and open source package, under GPL license, available form the Bioconductor project at www.bioconductor.org. A user guide and examples are provided with the package.</description><subject>Algorithms</subject><issn>1177-9322</issn><issn>1177-9322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1r3DAQNaGBpmkP_Qc6FXrwVrIsyb4EdtOkXUjJQtKzGOvD0cZehZED3f76KOtQ2hJ0mGH05s3Me0XxkdFFzbj6slqtFzecSnpUnDCmVNnyqnrzV_62eJfSllLJGiVPigDe7zeAQEoCZBWiiTv7aKaIZAPmHnpH_CFHGAY3hN_Okg26B4zGpRR2PVkOfcQw3Y2JRE-WmW50E4Zf5EcwGAER9uQrTPC-OPYwJPfhJZ4WPy8vbs-_l1fX39bny6vScEVp6Y3krPZVK4WpeSeaqumU61TjaqZq2zgKnVFdxhrKmqrLJ9m6tY2wsmLUKH5arGdeG2GrHzCMgHsdIehDIWKvAadgBqcVtz5PBWDW1_Q5QmvAV1SovIOVmWsxc_WQ4WHn44Rg8rNuDFkp50OuL6tWCMFkS3PD57khn54SOv9nAUb1s0E6G6QPBmXspxmbssp6Gx9xl3V5FXg2A4fQOZwgvSwA_1z336cBbeKomRCSPwE_t6ZE</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Schmidberger, Markus</creator><creator>Vicedo, Esmeralda</creator><creator>Mansmann, Ulrich</creator><general>SAGE Publishing</general><general>SAGE Publications</general><general>Sage Publications Ltd. (UK)</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2009</creationdate><title>affyPara - a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data</title><author>Schmidberger, Markus ; Vicedo, Esmeralda ; Mansmann, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3700-fc6314f2965c43b5828b7eb78e4174d8e0abc7b370c0182b322d49d85d6210c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidberger, Markus</creatorcontrib><creatorcontrib>Vicedo, Esmeralda</creatorcontrib><creatorcontrib>Mansmann, Ulrich</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioinformatics and biology insights</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidberger, Markus</au><au>Vicedo, Esmeralda</au><au>Mansmann, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>affyPara - a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data</atitle><jtitle>Bioinformatics and biology insights</jtitle><date>2009</date><risdate>2009</risdate><volume>2009</volume><issue>3</issue><spage>BBI.S3060</spage><epage>87</epage><pages>BBI.S3060-87</pages><issn>1177-9322</issn><eissn>1177-9322</eissn><abstract>Markus Schmidberger, Esmeralda Vicedo and Ulrich MansmannDivision of Biometrics and Bioinformatics, IBE, University of Munich, 81377 Munich, Germany. AbstractMicroarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule's prediction quality honestly. This paper proposes the new Bioconductor package affyPara for parallelized preprocessing of Affymetrix microarray data. Partition of data can be applied on arrays and parallelization of algorithms is a straightforward consequence. The partition of data and distribution to several nodes solves the main memory problems and accelerates preprocessing by up to the factor 20 for 200 or more arrays. affyPara is a free and open source package, under GPL license, available form the Bioconductor project at www.bioconductor.org. A user guide and examples are provided with the package.</abstract><cop>London, England</cop><pub>SAGE Publishing</pub><doi>10.4137/BBI.S3060</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1177-9322 |
ispartof | Bioinformatics and biology insights, 2009, Vol.2009 (3), p.BBI.S3060-87 |
issn | 1177-9322 1177-9322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_73dfc37aa1df407aa1a9caf2057314d6 |
source | SAGE Open Access; Publicly Available Content Database; PubMed Central |
subjects | Algorithms |
title | affyPara - a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=affyPara%20-%20a%20Bioconductor%20Package%20for%20Parallelized%20Preprocessing%20Algorithms%20of%20Affymetrix%20Microarray%20Data&rft.jtitle=Bioinformatics%20and%20biology%20insights&rft.au=Schmidberger,%20Markus&rft.date=2009&rft.volume=2009&rft.issue=3&rft.spage=BBI.S3060&rft.epage=87&rft.pages=BBI.S3060-87&rft.issn=1177-9322&rft.eissn=1177-9322&rft_id=info:doi/10.4137/BBI.S3060&rft_dat=%3Cgale_doaj_%3EA295551690%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3700-fc6314f2965c43b5828b7eb78e4174d8e0abc7b370c0182b322d49d85d6210c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A295551690&rft_sage_id=10.4137_BBI.S3060&rfr_iscdi=true |