Loading…

Combined Treatment with KV Channel Inhibitor 4-Aminopyridine and either γ-Cystathionine Lyase Inhibitor β-Cyanoalanine or Epinephrine Restores Blood Pressure, and Improves Survival in the Wistar Rat Model of Anaphylactic Shock

The mechanism of anaphylactic shock (AS) remains incompletely understood. The potassium channel blocker 4-aminopyridine (4-AP), the inhibitors of cystathionine γ-lyase (ICSE), dl-propargylglycine (DPG) or β-cyanoalanine (BCA), and the nitric oxide (NO) synthase produce vasoconstriction and could be...

Full description

Saved in:
Bibliographic Details
Published in:Biology (Basel, Switzerland) Switzerland), 2022-10, Vol.11 (10), p.1455
Main Authors: Bellou, Abdelouahab, Sennoun, Nacira, Aburawi, Elhadi H., Jayaraj, Richard L., Alper, Seth L., Alfaki, Ibrahim Abdallah, Yasin, Javed, Sekar, Subramanian, Shafiuallah, Mohamed, Al-Salam, Suhail, Nemmar, Abderrahim, Kazzam, Elsadig, Mertes, Paul Michel, Al-Hammadi, Suleiman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanism of anaphylactic shock (AS) remains incompletely understood. The potassium channel blocker 4-aminopyridine (4-AP), the inhibitors of cystathionine γ-lyase (ICSE), dl-propargylglycine (DPG) or β-cyanoalanine (BCA), and the nitric oxide (NO) synthase produce vasoconstriction and could be an alternative for the treatment of AS. The aim of this study was to demonstrate the ability of L-NAME, ICSE alone or in combination with 4-AP to restore blood pressure (BP) and improve survival in ovalbumin (OVA) rats AS. Experimental groups included non-sensitized Wistar rats (n = 6); AS (n = 6); AS (n = 10 per group) treated i.v. with 4-AP (AS+4-AP), epinephrine (AS+EPI), AS+DPG, AS+BCA, or with L-NAME (AS+L-NAME); or AS treated with drug combinations 4-AP+DPG, 4-AP+BCA, 4-AP+L-NAME, or 4-AP+EPI. AS was induced by i.v. OVA (1 mg). Treatments were administered i.v. one minute after AS induction. Mean arterial BP (MAP), heart rate (HR), and survival were monitored for 60 min. Plasma levels of histamine, prostaglandin E2 (PGE2) and F2 (PGF2α), leukotriene B4 and C4, angiotensin II, vasopressin, oxidative stress markers, pH, HCO3, PaO2, PaCO2, and K+ were measured. OVA induced severe hypotension and all AS rats died. Moreover, 4-AP, 4-AP+EPI, or 4-AP+BCA normalized both MAP and HR and increased survival. All sensitized rats treated with 4-AP alone or with 4-AP+BCA survived. The time-integrated MAP “area under the curve” was significantly higher after combined 4-AP treatment with ICSE. Metabolic acidosis was not rescued and NO, ICSE, and Kv inhibitors differentially alter oxidative stress and plasma levels of anaphylactic mediators. The AS-induced reduction of serum angiotensin II levels was prevented by 4-AP treatment alone or in combination with other drugs. Further, 4-AP treatment combined with EPI or with BCA also increased serum PGF2α, whereas only the 4-AP+EPI combination increased serum LTB4. Serum vasopressin and angiotensin II levels were increased by 4-AP treatment alone or in combination with other drugs. Moreover, 4-AP alone and in combination with inhibition of cystathionine γ-lyase or EPI normalizes BP, increases serum vasoconstrictor levels, and improves survival in the Wistar rat model of AS. These findings suggest possible investigative treatment pathways for research into epinephrine-refractory anaphylactic shock in patients.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology11101455