Loading…

Multiple positive solutions to some second-order integral boundary value problems with singularity on space variable

This article deals with integral boundary value problems of the second-order differential equations { u ″ ( t ) + a ( t ) u ′ ( t ) + b ( t ) u ( t ) + f ( t , u ( t ) ) = 0 , t ∈ J + , u ( 0 ) = ∫ 0 1 g ( s ) u ( s ) d s , u ( 1 ) = ∫ 0 1 h ( s ) u ( s ) d s , where a ∈ C ( J ) , b ∈ C ( J , R − )...

Full description

Saved in:
Bibliographic Details
Published in:Boundary value problems 2017-06, Vol.2017 (1), p.1-10, Article 90
Main Authors: Zhong, Qiuyan, Zhang, Xingqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article deals with integral boundary value problems of the second-order differential equations { u ″ ( t ) + a ( t ) u ′ ( t ) + b ( t ) u ( t ) + f ( t , u ( t ) ) = 0 , t ∈ J + , u ( 0 ) = ∫ 0 1 g ( s ) u ( s ) d s , u ( 1 ) = ∫ 0 1 h ( s ) u ( s ) d s , where a ∈ C ( J ) , b ∈ C ( J , R − ) , f ∈ C ( J + × R + , R + ) and g , h ∈ L 1 ( J ) are nonnegative. The result of the existence of two positive solutions is established by virtue of fixed point index theory on cones. Especially, the nonlinearity f permits the singularity on the space variable.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-017-0822-9