Loading…

Multiple positive solutions to some second-order integral boundary value problems with singularity on space variable

This article deals with integral boundary value problems of the second-order differential equations { u ″ ( t ) + a ( t ) u ′ ( t ) + b ( t ) u ( t ) + f ( t , u ( t ) ) = 0 , t ∈ J + , u ( 0 ) = ∫ 0 1 g ( s ) u ( s ) d s , u ( 1 ) = ∫ 0 1 h ( s ) u ( s ) d s , where a ∈ C ( J ) , b ∈ C ( J , R − )...

Full description

Saved in:
Bibliographic Details
Published in:Boundary value problems 2017-06, Vol.2017 (1), p.1-10, Article 90
Main Authors: Zhong, Qiuyan, Zhang, Xingqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-61ca8389d62d14ac6e371abe8a8988a87d25266dc3faa4d981019f128c3071123
cites cdi_FETCH-LOGICAL-c425t-61ca8389d62d14ac6e371abe8a8988a87d25266dc3faa4d981019f128c3071123
container_end_page 10
container_issue 1
container_start_page 1
container_title Boundary value problems
container_volume 2017
creator Zhong, Qiuyan
Zhang, Xingqiu
description This article deals with integral boundary value problems of the second-order differential equations { u ″ ( t ) + a ( t ) u ′ ( t ) + b ( t ) u ( t ) + f ( t , u ( t ) ) = 0 , t ∈ J + , u ( 0 ) = ∫ 0 1 g ( s ) u ( s ) d s , u ( 1 ) = ∫ 0 1 h ( s ) u ( s ) d s , where a ∈ C ( J ) , b ∈ C ( J , R − ) , f ∈ C ( J + × R + , R + ) and g , h ∈ L 1 ( J ) are nonnegative. The result of the existence of two positive solutions is established by virtue of fixed point index theory on cones. Especially, the nonlinearity f permits the singularity on the space variable.
doi_str_mv 10.1186/s13661-017-0822-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_73e9e567c56b49929bacc30a1bf86160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_73e9e567c56b49929bacc30a1bf86160</doaj_id><sourcerecordid>1910573758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-61ca8389d62d14ac6e371abe8a8988a87d25266dc3faa4d981019f128c3071123</originalsourceid><addsrcrecordid>eNp1kc1u3SAQha2qlZqmfYDukLJ2y4DNz7KKkiZSomzSNRoDvuWKa24Bp8rbh8RVlU02DIzO-ZjR6bqvQL8BKPG9ABcCegqyp4qxXr_rTkAo2TMp6ftX94_dp1L2lHLNB3bS1ds11nCMnhxTCTU8eFJSXGtISyE1tcehdbxNi-tTdj6TsFS_yxjJlNbFYX4kDxjX5s9piv5QyN9Qf5MSlt0aMYf6SNJCyhGtb8IcsIk-dx9mjMV_-VdPu1-XF_fnV_3N3c_r8x83vR3YWHsBFhVX2gnmYEArPJeAk1eotGqHdGxkQjjLZ8TBaQUU9AxMWU4lAOOn3fXGdQn35pjDoY1rEgbz0kh5ZzDXYKM3knvtRyHtKKZBa6YntA2DMM1KgKCNdbax2p5_Vl-q2ac1L218AxroKLkcVVPBprI5lZL9_P9XoOY5KLMFZVpQ5jkoo5uHbZ7StMvO51fkN01P5xKXZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910573758</pqid></control><display><type>article</type><title>Multiple positive solutions to some second-order integral boundary value problems with singularity on space variable</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Zhong, Qiuyan ; Zhang, Xingqiu</creator><creatorcontrib>Zhong, Qiuyan ; Zhang, Xingqiu</creatorcontrib><description>This article deals with integral boundary value problems of the second-order differential equations { u ″ ( t ) + a ( t ) u ′ ( t ) + b ( t ) u ( t ) + f ( t , u ( t ) ) = 0 , t ∈ J + , u ( 0 ) = ∫ 0 1 g ( s ) u ( s ) d s , u ( 1 ) = ∫ 0 1 h ( s ) u ( s ) d s , where a ∈ C ( J ) , b ∈ C ( J , R − ) , f ∈ C ( J + × R + , R + ) and g , h ∈ L 1 ( J ) are nonnegative. The result of the existence of two positive solutions is established by virtue of fixed point index theory on cones. Especially, the nonlinearity f permits the singularity on the space variable.</description><identifier>ISSN: 1687-2770</identifier><identifier>ISSN: 1687-2762</identifier><identifier>EISSN: 1687-2770</identifier><identifier>DOI: 10.1186/s13661-017-0822-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Approximations and Expansions ; Boundary value problems ; cone ; Cones ; Difference and Functional Equations ; Differential equations ; integral boundary value ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Ordinary Differential Equations ; Partial Differential Equations ; singularity ; two positive solutions</subject><ispartof>Boundary value problems, 2017-06, Vol.2017 (1), p.1-10, Article 90</ispartof><rights>The Author(s) 2017</rights><rights>Boundary Value Problems is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-61ca8389d62d14ac6e371abe8a8988a87d25266dc3faa4d981019f128c3071123</citedby><cites>FETCH-LOGICAL-c425t-61ca8389d62d14ac6e371abe8a8988a87d25266dc3faa4d981019f128c3071123</cites><orcidid>0000-0002-5832-2892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1910573758/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1910573758?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zhong, Qiuyan</creatorcontrib><creatorcontrib>Zhang, Xingqiu</creatorcontrib><title>Multiple positive solutions to some second-order integral boundary value problems with singularity on space variable</title><title>Boundary value problems</title><addtitle>Bound Value Probl</addtitle><description>This article deals with integral boundary value problems of the second-order differential equations { u ″ ( t ) + a ( t ) u ′ ( t ) + b ( t ) u ( t ) + f ( t , u ( t ) ) = 0 , t ∈ J + , u ( 0 ) = ∫ 0 1 g ( s ) u ( s ) d s , u ( 1 ) = ∫ 0 1 h ( s ) u ( s ) d s , where a ∈ C ( J ) , b ∈ C ( J , R − ) , f ∈ C ( J + × R + , R + ) and g , h ∈ L 1 ( J ) are nonnegative. The result of the existence of two positive solutions is established by virtue of fixed point index theory on cones. Especially, the nonlinearity f permits the singularity on the space variable.</description><subject>Analysis</subject><subject>Approximations and Expansions</subject><subject>Boundary value problems</subject><subject>cone</subject><subject>Cones</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>integral boundary value</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>singularity</subject><subject>two positive solutions</subject><issn>1687-2770</issn><issn>1687-2762</issn><issn>1687-2770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1u3SAQha2qlZqmfYDukLJ2y4DNz7KKkiZSomzSNRoDvuWKa24Bp8rbh8RVlU02DIzO-ZjR6bqvQL8BKPG9ABcCegqyp4qxXr_rTkAo2TMp6ftX94_dp1L2lHLNB3bS1ds11nCMnhxTCTU8eFJSXGtISyE1tcehdbxNi-tTdj6TsFS_yxjJlNbFYX4kDxjX5s9piv5QyN9Qf5MSlt0aMYf6SNJCyhGtb8IcsIk-dx9mjMV_-VdPu1-XF_fnV_3N3c_r8x83vR3YWHsBFhVX2gnmYEArPJeAk1eotGqHdGxkQjjLZ8TBaQUU9AxMWU4lAOOn3fXGdQn35pjDoY1rEgbz0kh5ZzDXYKM3knvtRyHtKKZBa6YntA2DMM1KgKCNdbax2p5_Vl-q2ac1L218AxroKLkcVVPBprI5lZL9_P9XoOY5KLMFZVpQ5jkoo5uHbZ7StMvO51fkN01P5xKXZA</recordid><startdate>20170617</startdate><enddate>20170617</enddate><creator>Zhong, Qiuyan</creator><creator>Zhang, Xingqiu</creator><general>Springer International Publishing</general><general>Hindawi Limited</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5832-2892</orcidid></search><sort><creationdate>20170617</creationdate><title>Multiple positive solutions to some second-order integral boundary value problems with singularity on space variable</title><author>Zhong, Qiuyan ; Zhang, Xingqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-61ca8389d62d14ac6e371abe8a8988a87d25266dc3faa4d981019f128c3071123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Approximations and Expansions</topic><topic>Boundary value problems</topic><topic>cone</topic><topic>Cones</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>integral boundary value</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>singularity</topic><topic>two positive solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Qiuyan</creatorcontrib><creatorcontrib>Zhang, Xingqiu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Boundary value problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Qiuyan</au><au>Zhang, Xingqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple positive solutions to some second-order integral boundary value problems with singularity on space variable</atitle><jtitle>Boundary value problems</jtitle><stitle>Bound Value Probl</stitle><date>2017-06-17</date><risdate>2017</risdate><volume>2017</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>90</artnum><issn>1687-2770</issn><issn>1687-2762</issn><eissn>1687-2770</eissn><abstract>This article deals with integral boundary value problems of the second-order differential equations { u ″ ( t ) + a ( t ) u ′ ( t ) + b ( t ) u ( t ) + f ( t , u ( t ) ) = 0 , t ∈ J + , u ( 0 ) = ∫ 0 1 g ( s ) u ( s ) d s , u ( 1 ) = ∫ 0 1 h ( s ) u ( s ) d s , where a ∈ C ( J ) , b ∈ C ( J , R − ) , f ∈ C ( J + × R + , R + ) and g , h ∈ L 1 ( J ) are nonnegative. The result of the existence of two positive solutions is established by virtue of fixed point index theory on cones. Especially, the nonlinearity f permits the singularity on the space variable.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13661-017-0822-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5832-2892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-2770
ispartof Boundary value problems, 2017-06, Vol.2017 (1), p.1-10, Article 90
issn 1687-2770
1687-2762
1687-2770
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_73e9e567c56b49929bacc30a1bf86160
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Analysis
Approximations and Expansions
Boundary value problems
cone
Cones
Difference and Functional Equations
Differential equations
integral boundary value
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinearity
Ordinary Differential Equations
Partial Differential Equations
singularity
two positive solutions
title Multiple positive solutions to some second-order integral boundary value problems with singularity on space variable
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20positive%20solutions%20to%20some%20second-order%20integral%20boundary%20value%20problems%20with%20singularity%20on%20space%20variable&rft.jtitle=Boundary%20value%20problems&rft.au=Zhong,%20Qiuyan&rft.date=2017-06-17&rft.volume=2017&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=90&rft.issn=1687-2770&rft.eissn=1687-2770&rft_id=info:doi/10.1186/s13661-017-0822-9&rft_dat=%3Cproquest_doaj_%3E1910573758%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-61ca8389d62d14ac6e371abe8a8988a87d25266dc3faa4d981019f128c3071123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1910573758&rft_id=info:pmid/&rfr_iscdi=true