Loading…

Numerical study of rotating cavitation and pressure pulsations in a centrifugal pump impeller

To investigate the variations in the flow field of centrifugal pumps with different cavitation numbers, this study utilized the shear stress transport k–ω turbulence model and Zwart–Gerber–Belamri cavitation model to examine the correlation between stall vortices and cavitation flow. The findings in...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2024-10, Vol.14 (10), p.105024-105024-13
Main Authors: Wu, Yuhan, Xiang, Chun, Mou, Jiegang, Qian, Heng, Duan, Zhenhua, Zhang, Sanxia, Zhou, Peijian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the variations in the flow field of centrifugal pumps with different cavitation numbers, this study utilized the shear stress transport k–ω turbulence model and Zwart–Gerber–Belamri cavitation model to examine the correlation between stall vortices and cavitation flow. The findings indicate that cavitation consistently coincides with the formation of stall vortices, and the distribution of cavitation mirrors the pattern of stall vortex structure. Cavitation tends to develop and aggregate around stall vortices, obstructing a significant portion of inlet areas within the flow channel. As the cavitation number decreases, both the area and intensity of stall vortices increase. For cavitations margins σ = 0.41, 0.23, and 0.15, we observed propagation frequencies of stall vortices at fs = 2.7, 1.8, and 0.9 Hz respectively, as these frequencies decrease relative to impeller movement until reaching near-stationary states. The pressure pulsations in various flow channels exhibit distinct phase differences; smaller cavity numbers result in larger phase disparities along with a gradual reduction in pressure pulsation amplitude. These discoveries present effective strategies for controlling and reducing both cavity formation and pressure fluctuations within centrifugal pumps, thereby enhancing overall stability.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0230969