Loading…
Elicitor Activity of Curdlan and Its Potential Application in Protection of Hass Avocado Plants against Phytophthora cinnamomi Rands
Phytophthora cinnamomi causes one of the most important diseases in avocado crop and its chemical management represents 25% of the production cost per year. Induction of plant defense responses by elicitors is a promising strategy that is compatible with sustainable agriculture. This study aimed to...
Saved in:
Published in: | Horticulturae 2022-07, Vol.8 (7), p.646 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phytophthora cinnamomi causes one of the most important diseases in avocado crop and its chemical management represents 25% of the production cost per year. Induction of plant defense responses by elicitors is a promising strategy that is compatible with sustainable agriculture. This study aimed to evaluate the effect of curdlan application on the induction of defense responses in avocado plants against P. cinnamomi. The trials were conducted under greenhouse conditions, and curdlan leaf spraying was performed one day before the inoculation of the pathogen. The results showed that the application of elicitor significantly increased the protection of avocado plants against P. cinnamomi, decreasing the injury and wilting. The Curd + Phy treatment improved the defenses of plants by increasing the enzymes peroxidase (POD) and polyphenol oxidase (PPO) in the first 3 h after inoculation and increasing the enzymes superoxide dismutase (SOD) and phenylalanine ammonium lyase (PAL) 144 h after inoculation (p < 0.05). Also, chlorophyll and carotenoid content increased or remained stable in Curd + Phy treatment. Therefore, these results suggest that curdlan increases the protection against P. cinnamomi and its protection could be due to an increase in the activity of the enzymes related to the phenylpropanoid pathway as well as the effect on chlorophyll and carotenoids. |
---|---|
ISSN: | 2311-7524 2311-7524 |
DOI: | 10.3390/horticulturae8070646 |