Loading…

Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate

Some beetle species can attack honeybee colonies, causing severe damage to beekeeping. These pests include Oplostomus fuligineus, which is also known as the Large Hive Beetle (LHB). This beetle is native to Sub-Saharan Africa and has recently also been recorded in some parts of North Africa. It feed...

Full description

Saved in:
Bibliographic Details
Published in:Insects (Basel, Switzerland) Switzerland), 2021-03, Vol.12 (4), p.275
Main Authors: Abou-Shaara, Hossam, Alashaal, Sara A., Hosni, Eslam M., Nasser, Mohamed G., Ansari, Mohammad J., Alharbi, Sulaiman Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Some beetle species can attack honeybee colonies, causing severe damage to beekeeping. These pests include Oplostomus fuligineus, which is also known as the Large Hive Beetle (LHB). This beetle is native to Sub-Saharan Africa and has recently also been recorded in some parts of North Africa. It feeds mainly on young bee larvae and stored food within the colonies, causing severe damage to weak colonies. The present work sheds light on the current and future distribution (from 2050 to 2070) of this beetle in Africa and South Europe using species distribution modeling. Maxent was used to model the invasion of LHB. The Shared Socioeconomic Pathways (SSPs) 126 and 585 were used to model the future distribution of LHB. The Maxent models showed satisfactory results with a high Area Under Curve (AUC) value (0.85 ± 0.02). Furthermore, the True Skill Statistics (TSS) value was equal to 0.87. The current and future maps showed a high risk of invasion because of temperature variation in most of the parts of North Africa and South Europe. The maps also predicted the future invasion of LHB into other countries, mainly through southern Europe. These predictive risk maps will help quarantine authorities in highly relevant countries to prevent the expansion of this pest outside of its natural range.
ISSN:2075-4450
2075-4450
DOI:10.3390/insects12040275