Loading…
MPC-Based Arctan Droop Control Strategy of the Parallel Inverter System in an Islanded AC Microgrid
Distributed generations (DG) are one of the upcoming technologies recently used by many electric utilities in all corners of the world. Most of those DG form the microgrid (MG) to serve local loads and can be connected to the grid. This DG’s technology is enabled by utilizing renewable energy source...
Saved in:
Published in: | Journal of engineering (Cairo, Egypt) Egypt), 2021-03, Vol.2021, p.1-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distributed generations (DG) are one of the upcoming technologies recently used by many electric utilities in all corners of the world. Most of those DG form the microgrid (MG) to serve local loads and can be connected to the grid. This DG’s technology is enabled by utilizing renewable energy sources (REs) that are ecofriendly; however, these REs are intermittent by their nature, so controlling a power electronic device interfaced with them to be connected to the grid is another challenge. Many researchers have worked on the inverters’ control in MG. This study also elaborates on the control strategy for inverters adapted to REs for proper control of voltage and frequency used in an islanded microgrid. The study proposes a hybrid control strategy made of the virtual impedance droop control with arctan function and model predictive control. Extensive simulations have been carried out to validate the proposed control strategy’s effectiveness in terms of rapid transient response and stabilization of voltage, frequency, and power equitability among the microsources in the islanded microgrid. |
---|---|
ISSN: | 2314-4904 2314-4912 2314-4912 |
DOI: | 10.1155/2021/1870590 |