Loading…
Using double attention for text tattoo localisation
Text tattoos contain rich information about an individual for forensic investigation. To extract this information, text tattoo localisation is the first and essential step. Previous tattoo studies applied existing object detectors to detect general tattoos, but none of them considered text tattoo lo...
Saved in:
Published in: | IET biometrics 2022-05, Vol.11 (3), p.199-214 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3721-7ed7c11fcfc6dbe61f1efafc0469a0cce4e134e1acd26748404c44e564b31a643 |
---|---|
cites | cdi_FETCH-LOGICAL-c3721-7ed7c11fcfc6dbe61f1efafc0469a0cce4e134e1acd26748404c44e564b31a643 |
container_end_page | 214 |
container_issue | 3 |
container_start_page | 199 |
container_title | IET biometrics |
container_volume | 11 |
creator | Xu, Xingpeng Prasad, Shitala Cheng, Kuanhong Kin Kong, Adams Wai |
description | Text tattoos contain rich information about an individual for forensic investigation. To extract this information, text tattoo localisation is the first and essential step. Previous tattoo studies applied existing object detectors to detect general tattoos, but none of them considered text tattoo localisation and they neglect the prior knowledge that text tattoos are usually inside or nearby larger tattoos and appear only on human skin. To use this prior knowledge, a prior knowledge‐based attention mechanism (PKAM) and a network named Text Tattoo Localisation Network based on Double Attention (TTLN‐DA) are proposed. In addition to TTLN‐DA, two variants of TTLN‐DA are designed to study the effectiveness of different prior knowledge. For this study, NTU Tattoo V2, the largest tattoo dataset and NTU Text Tattoo V1, the largest text tattoo dataset are established. To examine the importance of the prior knowledge and the effectiveness of the proposed attention mechanism and the networks, TTLN‐DA and its variants are compared with state‐of‐the‐art object detectors and text detectors. The experimental results indicate that the prior knowledge is vital for text tattoo localisation; The PKAM contributes significantly to the performance and TTLN‐DA outperforms the state‐of‐the‐art object detectors and scene text detectors. |
doi_str_mv | 10.1049/bme2.12071 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_741bdcc7dda84a478416aadb9bf6f74b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745563736</galeid><doaj_id>oai_doaj_org_article_741bdcc7dda84a478416aadb9bf6f74b</doaj_id><sourcerecordid>A745563736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3721-7ed7c11fcfc6dbe61f1efafc0469a0cce4e134e1acd26748404c44e564b31a643</originalsourceid><addsrcrecordid>eNp9UU1LJDEQDeLCyqyX_QUN3oSZTSU1SfdRxS9QvKznUJ2PIUNPR9MZ1H9vxl48bopQ4dV7LwWPsd_AV8Cx-9PvvFiB4BqO2IngqJfYoTr-fsv2Jzudpi2vR7W4Bjhh8nmK46Zxad8PvqFS_FhiGpuQclP8e2lKxVJqhmRpiBMdhr_Yj0DD5E__9QV7vrn-e3W3fHi6vb-6eFhaqQUstXfaAgQbrHK9VxDABwqWo-qIW-vRg6yXrBNKY4scLaJfK-wlkEK5YPezr0u0NS857ih_mETRfAEpbwzlEu3gjUbonbXaOWqRULcIisj1XR9U0NVwwc5mr5ecXvd-Kmab9nms6xvJOyG05OLw42pmbaiaxjGkksnWcn4XbRp9iBW_0LheK6mlqoLzWWBzmqbsw_eawM0hFHMIxXyFUskwk9-qy8d_mOby8VrMmk-6o41j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092273024</pqid></control><display><type>article</type><title>Using double attention for text tattoo localisation</title><source>IET Digital Library</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Xu, Xingpeng ; Prasad, Shitala ; Cheng, Kuanhong ; Kin Kong, Adams Wai</creator><creatorcontrib>Xu, Xingpeng ; Prasad, Shitala ; Cheng, Kuanhong ; Kin Kong, Adams Wai</creatorcontrib><description>Text tattoos contain rich information about an individual for forensic investigation. To extract this information, text tattoo localisation is the first and essential step. Previous tattoo studies applied existing object detectors to detect general tattoos, but none of them considered text tattoo localisation and they neglect the prior knowledge that text tattoos are usually inside or nearby larger tattoos and appear only on human skin. To use this prior knowledge, a prior knowledge‐based attention mechanism (PKAM) and a network named Text Tattoo Localisation Network based on Double Attention (TTLN‐DA) are proposed. In addition to TTLN‐DA, two variants of TTLN‐DA are designed to study the effectiveness of different prior knowledge. For this study, NTU Tattoo V2, the largest tattoo dataset and NTU Text Tattoo V1, the largest text tattoo dataset are established. To examine the importance of the prior knowledge and the effectiveness of the proposed attention mechanism and the networks, TTLN‐DA and its variants are compared with state‐of‐the‐art object detectors and text detectors. The experimental results indicate that the prior knowledge is vital for text tattoo localisation; The PKAM contributes significantly to the performance and TTLN‐DA outperforms the state‐of‐the‐art object detectors and scene text detectors.</description><identifier>ISSN: 2047-4938</identifier><identifier>EISSN: 2047-4946</identifier><identifier>DOI: 10.1049/bme2.12071</identifier><language>eng</language><publisher>Stevenage: John Wiley & Sons, Inc</publisher><subject>attention mechanism ; Criminal investigations ; Datasets ; Detectors ; Effectiveness ; Forensic computing ; forensics ; Information processing ; Localization ; Neural networks ; Personal information ; Sensors ; Skin ; tattoo localisation ; Tattoos ; text tattoo localisation ; visual identification</subject><ispartof>IET biometrics, 2022-05, Vol.11 (3), p.199-214</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3721-7ed7c11fcfc6dbe61f1efafc0469a0cce4e134e1acd26748404c44e564b31a643</citedby><cites>FETCH-LOGICAL-c3721-7ed7c11fcfc6dbe61f1efafc0469a0cce4e134e1acd26748404c44e564b31a643</cites><orcidid>0000-0002-0791-0221 ; 0000-0002-0025-4890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fbme2.12071$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fbme2.12071$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Xu, Xingpeng</creatorcontrib><creatorcontrib>Prasad, Shitala</creatorcontrib><creatorcontrib>Cheng, Kuanhong</creatorcontrib><creatorcontrib>Kin Kong, Adams Wai</creatorcontrib><title>Using double attention for text tattoo localisation</title><title>IET biometrics</title><description>Text tattoos contain rich information about an individual for forensic investigation. To extract this information, text tattoo localisation is the first and essential step. Previous tattoo studies applied existing object detectors to detect general tattoos, but none of them considered text tattoo localisation and they neglect the prior knowledge that text tattoos are usually inside or nearby larger tattoos and appear only on human skin. To use this prior knowledge, a prior knowledge‐based attention mechanism (PKAM) and a network named Text Tattoo Localisation Network based on Double Attention (TTLN‐DA) are proposed. In addition to TTLN‐DA, two variants of TTLN‐DA are designed to study the effectiveness of different prior knowledge. For this study, NTU Tattoo V2, the largest tattoo dataset and NTU Text Tattoo V1, the largest text tattoo dataset are established. To examine the importance of the prior knowledge and the effectiveness of the proposed attention mechanism and the networks, TTLN‐DA and its variants are compared with state‐of‐the‐art object detectors and text detectors. The experimental results indicate that the prior knowledge is vital for text tattoo localisation; The PKAM contributes significantly to the performance and TTLN‐DA outperforms the state‐of‐the‐art object detectors and scene text detectors.</description><subject>attention mechanism</subject><subject>Criminal investigations</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Effectiveness</subject><subject>Forensic computing</subject><subject>forensics</subject><subject>Information processing</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Personal information</subject><subject>Sensors</subject><subject>Skin</subject><subject>tattoo localisation</subject><subject>Tattoos</subject><subject>text tattoo localisation</subject><subject>visual identification</subject><issn>2047-4938</issn><issn>2047-4946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LJDEQDeLCyqyX_QUN3oSZTSU1SfdRxS9QvKznUJ2PIUNPR9MZ1H9vxl48bopQ4dV7LwWPsd_AV8Cx-9PvvFiB4BqO2IngqJfYoTr-fsv2Jzudpi2vR7W4Bjhh8nmK46Zxad8PvqFS_FhiGpuQclP8e2lKxVJqhmRpiBMdhr_Yj0DD5E__9QV7vrn-e3W3fHi6vb-6eFhaqQUstXfaAgQbrHK9VxDABwqWo-qIW-vRg6yXrBNKY4scLaJfK-wlkEK5YPezr0u0NS857ih_mETRfAEpbwzlEu3gjUbonbXaOWqRULcIisj1XR9U0NVwwc5mr5ecXvd-Kmab9nms6xvJOyG05OLw42pmbaiaxjGkksnWcn4XbRp9iBW_0LheK6mlqoLzWWBzmqbsw_eawM0hFHMIxXyFUskwk9-qy8d_mOby8VrMmk-6o41j</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Xu, Xingpeng</creator><creator>Prasad, Shitala</creator><creator>Cheng, Kuanhong</creator><creator>Kin Kong, Adams Wai</creator><general>John Wiley & Sons, Inc</general><general>Hindawi-IET</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0791-0221</orcidid><orcidid>https://orcid.org/0000-0002-0025-4890</orcidid></search><sort><creationdate>202205</creationdate><title>Using double attention for text tattoo localisation</title><author>Xu, Xingpeng ; Prasad, Shitala ; Cheng, Kuanhong ; Kin Kong, Adams Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3721-7ed7c11fcfc6dbe61f1efafc0469a0cce4e134e1acd26748404c44e564b31a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention mechanism</topic><topic>Criminal investigations</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Effectiveness</topic><topic>Forensic computing</topic><topic>forensics</topic><topic>Information processing</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Personal information</topic><topic>Sensors</topic><topic>Skin</topic><topic>tattoo localisation</topic><topic>Tattoos</topic><topic>text tattoo localisation</topic><topic>visual identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xingpeng</creatorcontrib><creatorcontrib>Prasad, Shitala</creatorcontrib><creatorcontrib>Cheng, Kuanhong</creatorcontrib><creatorcontrib>Kin Kong, Adams Wai</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xingpeng</au><au>Prasad, Shitala</au><au>Cheng, Kuanhong</au><au>Kin Kong, Adams Wai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using double attention for text tattoo localisation</atitle><jtitle>IET biometrics</jtitle><date>2022-05</date><risdate>2022</risdate><volume>11</volume><issue>3</issue><spage>199</spage><epage>214</epage><pages>199-214</pages><issn>2047-4938</issn><eissn>2047-4946</eissn><abstract>Text tattoos contain rich information about an individual for forensic investigation. To extract this information, text tattoo localisation is the first and essential step. Previous tattoo studies applied existing object detectors to detect general tattoos, but none of them considered text tattoo localisation and they neglect the prior knowledge that text tattoos are usually inside or nearby larger tattoos and appear only on human skin. To use this prior knowledge, a prior knowledge‐based attention mechanism (PKAM) and a network named Text Tattoo Localisation Network based on Double Attention (TTLN‐DA) are proposed. In addition to TTLN‐DA, two variants of TTLN‐DA are designed to study the effectiveness of different prior knowledge. For this study, NTU Tattoo V2, the largest tattoo dataset and NTU Text Tattoo V1, the largest text tattoo dataset are established. To examine the importance of the prior knowledge and the effectiveness of the proposed attention mechanism and the networks, TTLN‐DA and its variants are compared with state‐of‐the‐art object detectors and text detectors. The experimental results indicate that the prior knowledge is vital for text tattoo localisation; The PKAM contributes significantly to the performance and TTLN‐DA outperforms the state‐of‐the‐art object detectors and scene text detectors.</abstract><cop>Stevenage</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1049/bme2.12071</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0791-0221</orcidid><orcidid>https://orcid.org/0000-0002-0025-4890</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-4938 |
ispartof | IET biometrics, 2022-05, Vol.11 (3), p.199-214 |
issn | 2047-4938 2047-4946 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_741bdcc7dda84a478416aadb9bf6f74b |
source | IET Digital Library; Open Access: Wiley-Blackwell Open Access Journals |
subjects | attention mechanism Criminal investigations Datasets Detectors Effectiveness Forensic computing forensics Information processing Localization Neural networks Personal information Sensors Skin tattoo localisation Tattoos text tattoo localisation visual identification |
title | Using double attention for text tattoo localisation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20double%20attention%20for%20text%20tattoo%20localisation&rft.jtitle=IET%20biometrics&rft.au=Xu,%20Xingpeng&rft.date=2022-05&rft.volume=11&rft.issue=3&rft.spage=199&rft.epage=214&rft.pages=199-214&rft.issn=2047-4938&rft.eissn=2047-4946&rft_id=info:doi/10.1049/bme2.12071&rft_dat=%3Cgale_doaj_%3EA745563736%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3721-7ed7c11fcfc6dbe61f1efafc0469a0cce4e134e1acd26748404c44e564b31a643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092273024&rft_id=info:pmid/&rft_galeid=A745563736&rfr_iscdi=true |