Loading…
Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution
The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at...
Saved in:
Published in: | Advanced science 2024-06, Vol.11 (24), p.e2309927-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3 |
container_end_page | n/a |
container_issue | 24 |
container_start_page | e2309927 |
container_title | Advanced science |
container_volume | 11 |
creator | Sun, Pengliang Zheng, Xiong Chen, Anran Zheng, Guanghong Wu, Yang Long, Min Zhang, Qingran Chen, Yinguang |
description | The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production.
Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. |
doi_str_mv | 10.1002/advs.202309927 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7420db5fcb3f4adc8b7e2c64336750ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7420db5fcb3f4adc8b7e2c64336750ec</doaj_id><sourcerecordid>2968922826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</originalsourceid><addsrcrecordid>eNqFks1uEzEQx1cIRKvSK0e0EhcuCf7a9fqE0hBopCIOAa6W1zu7dXDsYu-m2huPwAvwcjwJTlJCywVf7Bn_5zcez2TZc4ymGCHyWjXbOCWIUCQE4Y-yU4JFNaEVY4_vnU-y8xjXCCFcUM5w9TQ7SW5Rcc5Os59z72IfBt0b1-WzjQ83136Iv77_mIcx9spa4yBfuh5Cq7RRNr8w7eCS3LtkrEyfbqNVrkkhK1D5anQQujGvx_zDHmZ9shauSxwIuyQX3sc-5jP7Ve3hKepWJX5-OTbBd-DyxdbbYZfhWfakVTbC-d1-ln1-t_g0v5xcfXy_nM-uJrrgjE9oAYJTRQHrqqGs5YgWleAFJiUr6qJWu-Kp5g3CWLUcqMBljQkBzoFBpehZtjxwG6_W8iaYjQqj9MrIvcOHTqrQG21BckZQUxetrmnLVKOrmgPRJaO05AUCnVhvDqybod5Ao8H1QdkH0Ic3zlzLzm8lxlikVSTCqztC8N8GiL3cmKjBpl-G1BtJRFkJQipSJunLf6RrP4TUmSgp4gSndguRVNODSgcfY4D2-BqM5G6S5G6S5HGSUsCL-zUc5X_mJgnEQXBrLIz_wcnZ2y-rv_Dfx3Xa0w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072141899</pqid></control><display><type>article</type><title>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</title><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Sun, Pengliang ; Zheng, Xiong ; Chen, Anran ; Zheng, Guanghong ; Wu, Yang ; Long, Min ; Zhang, Qingran ; Chen, Yinguang</creator><creatorcontrib>Sun, Pengliang ; Zheng, Xiong ; Chen, Anran ; Zheng, Guanghong ; Wu, Yang ; Long, Min ; Zhang, Qingran ; Chen, Yinguang</creatorcontrib><description>The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production.
Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202309927</identifier><identifier>PMID: 38498774</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Adsorption ; amorphous‐crystalline heterostructures ; Composite materials ; Efficiency ; Electrolytes ; Emissions ; Energy ; Engineering ; hierarchical structure ; Hydrogen ; hydrogen evolution reaction ; Interfaces ; Morphology ; nanocages‐nanoclusters ; Scanning electron microscopy ; Seawater ; seawater electrolysis ; Spectrum analysis</subject><ispartof>Advanced science, 2024-06, Vol.11 (24), p.e2309927-n/a</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</citedby><cites>FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</cites><orcidid>0000-0001-5019-3232 ; 0000-0002-5327-1248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072141899/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072141899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11542,25732,27903,27904,36991,36992,44569,46030,46454,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38498774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Pengliang</creatorcontrib><creatorcontrib>Zheng, Xiong</creatorcontrib><creatorcontrib>Chen, Anran</creatorcontrib><creatorcontrib>Zheng, Guanghong</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Long, Min</creatorcontrib><creatorcontrib>Zhang, Qingran</creatorcontrib><creatorcontrib>Chen, Yinguang</creatorcontrib><title>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production.
Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability.</description><subject>Adsorption</subject><subject>amorphous‐crystalline heterostructures</subject><subject>Composite materials</subject><subject>Efficiency</subject><subject>Electrolytes</subject><subject>Emissions</subject><subject>Energy</subject><subject>Engineering</subject><subject>hierarchical structure</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Interfaces</subject><subject>Morphology</subject><subject>nanocages‐nanoclusters</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>seawater electrolysis</subject><subject>Spectrum analysis</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEQx1cIRKvSK0e0EhcuCf7a9fqE0hBopCIOAa6W1zu7dXDsYu-m2huPwAvwcjwJTlJCywVf7Bn_5zcez2TZc4ymGCHyWjXbOCWIUCQE4Y-yU4JFNaEVY4_vnU-y8xjXCCFcUM5w9TQ7SW5Rcc5Os59z72IfBt0b1-WzjQ83136Iv77_mIcx9spa4yBfuh5Cq7RRNr8w7eCS3LtkrEyfbqNVrkkhK1D5anQQujGvx_zDHmZ9shauSxwIuyQX3sc-5jP7Ve3hKepWJX5-OTbBd-DyxdbbYZfhWfakVTbC-d1-ln1-t_g0v5xcfXy_nM-uJrrgjE9oAYJTRQHrqqGs5YgWleAFJiUr6qJWu-Kp5g3CWLUcqMBljQkBzoFBpehZtjxwG6_W8iaYjQqj9MrIvcOHTqrQG21BckZQUxetrmnLVKOrmgPRJaO05AUCnVhvDqybod5Ao8H1QdkH0Ic3zlzLzm8lxlikVSTCqztC8N8GiL3cmKjBpl-G1BtJRFkJQipSJunLf6RrP4TUmSgp4gSndguRVNODSgcfY4D2-BqM5G6S5G6S5HGSUsCL-zUc5X_mJgnEQXBrLIz_wcnZ2y-rv_Dfx3Xa0w</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sun, Pengliang</creator><creator>Zheng, Xiong</creator><creator>Chen, Anran</creator><creator>Zheng, Guanghong</creator><creator>Wu, Yang</creator><creator>Long, Min</creator><creator>Zhang, Qingran</creator><creator>Chen, Yinguang</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5019-3232</orcidid><orcidid>https://orcid.org/0000-0002-5327-1248</orcidid></search><sort><creationdate>20240601</creationdate><title>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</title><author>Sun, Pengliang ; Zheng, Xiong ; Chen, Anran ; Zheng, Guanghong ; Wu, Yang ; Long, Min ; Zhang, Qingran ; Chen, Yinguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>amorphous‐crystalline heterostructures</topic><topic>Composite materials</topic><topic>Efficiency</topic><topic>Electrolytes</topic><topic>Emissions</topic><topic>Energy</topic><topic>Engineering</topic><topic>hierarchical structure</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Interfaces</topic><topic>Morphology</topic><topic>nanocages‐nanoclusters</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>seawater electrolysis</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pengliang</creatorcontrib><creatorcontrib>Zheng, Xiong</creatorcontrib><creatorcontrib>Chen, Anran</creatorcontrib><creatorcontrib>Zheng, Guanghong</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Long, Min</creatorcontrib><creatorcontrib>Zhang, Qingran</creatorcontrib><creatorcontrib>Chen, Yinguang</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pengliang</au><au>Zheng, Xiong</au><au>Chen, Anran</au><au>Zheng, Guanghong</au><au>Wu, Yang</au><au>Long, Min</au><au>Zhang, Qingran</au><au>Chen, Yinguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>24</issue><spage>e2309927</spage><epage>n/a</epage><pages>e2309927-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production.
Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>38498774</pmid><doi>10.1002/advs.202309927</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5019-3232</orcidid><orcidid>https://orcid.org/0000-0002-5327-1248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2024-06, Vol.11 (24), p.e2309927-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7420db5fcb3f4adc8b7e2c64336750ec |
source | Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Adsorption amorphous‐crystalline heterostructures Composite materials Efficiency Electrolytes Emissions Energy Engineering hierarchical structure Hydrogen hydrogen evolution reaction Interfaces Morphology nanocages‐nanoclusters Scanning electron microscopy Seawater seawater electrolysis Spectrum analysis |
title | Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Amorphous%E2%80%90Crystalline%20Interfacial%20Bifunctional%20Site%20Island%E2%80%90Sea%20Synergy%20by%20Morphology%20Engineering%20Boosts%20Alkaline%20Seawater%20Hydrogen%20Evolution&rft.jtitle=Advanced%20science&rft.au=Sun,%20Pengliang&rft.date=2024-06-01&rft.volume=11&rft.issue=24&rft.spage=e2309927&rft.epage=n/a&rft.pages=e2309927-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202309927&rft_dat=%3Cproquest_doaj_%3E2968922826%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072141899&rft_id=info:pmid/38498774&rfr_iscdi=true |