Loading…

Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution

The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-06, Vol.11 (24), p.e2309927-n/a
Main Authors: Sun, Pengliang, Zheng, Xiong, Chen, Anran, Zheng, Guanghong, Wu, Yang, Long, Min, Zhang, Qingran, Chen, Yinguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3
cites cdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3
container_end_page n/a
container_issue 24
container_start_page e2309927
container_title Advanced science
container_volume 11
creator Sun, Pengliang
Zheng, Xiong
Chen, Anran
Zheng, Guanghong
Wu, Yang
Long, Min
Zhang, Qingran
Chen, Yinguang
description The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability.
doi_str_mv 10.1002/advs.202309927
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7420db5fcb3f4adc8b7e2c64336750ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7420db5fcb3f4adc8b7e2c64336750ec</doaj_id><sourcerecordid>2968922826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</originalsourceid><addsrcrecordid>eNqFks1uEzEQx1cIRKvSK0e0EhcuCf7a9fqE0hBopCIOAa6W1zu7dXDsYu-m2huPwAvwcjwJTlJCywVf7Bn_5zcez2TZc4ymGCHyWjXbOCWIUCQE4Y-yU4JFNaEVY4_vnU-y8xjXCCFcUM5w9TQ7SW5Rcc5Os59z72IfBt0b1-WzjQ83136Iv77_mIcx9spa4yBfuh5Cq7RRNr8w7eCS3LtkrEyfbqNVrkkhK1D5anQQujGvx_zDHmZ9shauSxwIuyQX3sc-5jP7Ve3hKepWJX5-OTbBd-DyxdbbYZfhWfakVTbC-d1-ln1-t_g0v5xcfXy_nM-uJrrgjE9oAYJTRQHrqqGs5YgWleAFJiUr6qJWu-Kp5g3CWLUcqMBljQkBzoFBpehZtjxwG6_W8iaYjQqj9MrIvcOHTqrQG21BckZQUxetrmnLVKOrmgPRJaO05AUCnVhvDqybod5Ao8H1QdkH0Ic3zlzLzm8lxlikVSTCqztC8N8GiL3cmKjBpl-G1BtJRFkJQipSJunLf6RrP4TUmSgp4gSndguRVNODSgcfY4D2-BqM5G6S5G6S5HGSUsCL-zUc5X_mJgnEQXBrLIz_wcnZ2y-rv_Dfx3Xa0w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072141899</pqid></control><display><type>article</type><title>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</title><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Sun, Pengliang ; Zheng, Xiong ; Chen, Anran ; Zheng, Guanghong ; Wu, Yang ; Long, Min ; Zhang, Qingran ; Chen, Yinguang</creator><creatorcontrib>Sun, Pengliang ; Zheng, Xiong ; Chen, Anran ; Zheng, Guanghong ; Wu, Yang ; Long, Min ; Zhang, Qingran ; Chen, Yinguang</creatorcontrib><description>The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202309927</identifier><identifier>PMID: 38498774</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; amorphous‐crystalline heterostructures ; Composite materials ; Efficiency ; Electrolytes ; Emissions ; Energy ; Engineering ; hierarchical structure ; Hydrogen ; hydrogen evolution reaction ; Interfaces ; Morphology ; nanocages‐nanoclusters ; Scanning electron microscopy ; Seawater ; seawater electrolysis ; Spectrum analysis</subject><ispartof>Advanced science, 2024-06, Vol.11 (24), p.e2309927-n/a</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</citedby><cites>FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</cites><orcidid>0000-0001-5019-3232 ; 0000-0002-5327-1248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072141899/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072141899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11542,25732,27903,27904,36991,36992,44569,46030,46454,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38498774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Pengliang</creatorcontrib><creatorcontrib>Zheng, Xiong</creatorcontrib><creatorcontrib>Chen, Anran</creatorcontrib><creatorcontrib>Zheng, Guanghong</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Long, Min</creatorcontrib><creatorcontrib>Zhang, Qingran</creatorcontrib><creatorcontrib>Chen, Yinguang</creatorcontrib><title>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability.</description><subject>Adsorption</subject><subject>amorphous‐crystalline heterostructures</subject><subject>Composite materials</subject><subject>Efficiency</subject><subject>Electrolytes</subject><subject>Emissions</subject><subject>Energy</subject><subject>Engineering</subject><subject>hierarchical structure</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Interfaces</subject><subject>Morphology</subject><subject>nanocages‐nanoclusters</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>seawater electrolysis</subject><subject>Spectrum analysis</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEQx1cIRKvSK0e0EhcuCf7a9fqE0hBopCIOAa6W1zu7dXDsYu-m2huPwAvwcjwJTlJCywVf7Bn_5zcez2TZc4ymGCHyWjXbOCWIUCQE4Y-yU4JFNaEVY4_vnU-y8xjXCCFcUM5w9TQ7SW5Rcc5Os59z72IfBt0b1-WzjQ83136Iv77_mIcx9spa4yBfuh5Cq7RRNr8w7eCS3LtkrEyfbqNVrkkhK1D5anQQujGvx_zDHmZ9shauSxwIuyQX3sc-5jP7Ve3hKepWJX5-OTbBd-DyxdbbYZfhWfakVTbC-d1-ln1-t_g0v5xcfXy_nM-uJrrgjE9oAYJTRQHrqqGs5YgWleAFJiUr6qJWu-Kp5g3CWLUcqMBljQkBzoFBpehZtjxwG6_W8iaYjQqj9MrIvcOHTqrQG21BckZQUxetrmnLVKOrmgPRJaO05AUCnVhvDqybod5Ao8H1QdkH0Ic3zlzLzm8lxlikVSTCqztC8N8GiL3cmKjBpl-G1BtJRFkJQipSJunLf6RrP4TUmSgp4gSndguRVNODSgcfY4D2-BqM5G6S5G6S5HGSUsCL-zUc5X_mJgnEQXBrLIz_wcnZ2y-rv_Dfx3Xa0w</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sun, Pengliang</creator><creator>Zheng, Xiong</creator><creator>Chen, Anran</creator><creator>Zheng, Guanghong</creator><creator>Wu, Yang</creator><creator>Long, Min</creator><creator>Zhang, Qingran</creator><creator>Chen, Yinguang</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5019-3232</orcidid><orcidid>https://orcid.org/0000-0002-5327-1248</orcidid></search><sort><creationdate>20240601</creationdate><title>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</title><author>Sun, Pengliang ; Zheng, Xiong ; Chen, Anran ; Zheng, Guanghong ; Wu, Yang ; Long, Min ; Zhang, Qingran ; Chen, Yinguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>amorphous‐crystalline heterostructures</topic><topic>Composite materials</topic><topic>Efficiency</topic><topic>Electrolytes</topic><topic>Emissions</topic><topic>Energy</topic><topic>Engineering</topic><topic>hierarchical structure</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Interfaces</topic><topic>Morphology</topic><topic>nanocages‐nanoclusters</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>seawater electrolysis</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pengliang</creatorcontrib><creatorcontrib>Zheng, Xiong</creatorcontrib><creatorcontrib>Chen, Anran</creatorcontrib><creatorcontrib>Zheng, Guanghong</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Long, Min</creatorcontrib><creatorcontrib>Zhang, Qingran</creatorcontrib><creatorcontrib>Chen, Yinguang</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pengliang</au><au>Zheng, Xiong</au><au>Chen, Anran</au><au>Zheng, Guanghong</au><au>Wu, Yang</au><au>Long, Min</au><au>Zhang, Qingran</au><au>Chen, Yinguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>24</issue><spage>e2309927</spage><epage>n/a</epage><pages>e2309927-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>The development of efficient and durable non‐precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous‐crystalline (A‐C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero‐interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A‐C non‐homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A‐C, functioning as a bifunctional site “island‐sea” synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi‐dimensional A‐C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water‐dissociation kinetics at the cluster Co sites. Additionally, PdCo‐Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long‐term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large‐scale hydrogen production. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 amorphous‐crystalline, functioning as a bifunctional site “island‐sea” synergy, enabling the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38498774</pmid><doi>10.1002/advs.202309927</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5019-3232</orcidid><orcidid>https://orcid.org/0000-0002-5327-1248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-06, Vol.11 (24), p.e2309927-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7420db5fcb3f4adc8b7e2c64336750ec
source Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database
subjects Adsorption
amorphous‐crystalline heterostructures
Composite materials
Efficiency
Electrolytes
Emissions
Energy
Engineering
hierarchical structure
Hydrogen
hydrogen evolution reaction
Interfaces
Morphology
nanocages‐nanoclusters
Scanning electron microscopy
Seawater
seawater electrolysis
Spectrum analysis
title Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Amorphous%E2%80%90Crystalline%20Interfacial%20Bifunctional%20Site%20Island%E2%80%90Sea%20Synergy%20by%20Morphology%20Engineering%20Boosts%20Alkaline%20Seawater%20Hydrogen%20Evolution&rft.jtitle=Advanced%20science&rft.au=Sun,%20Pengliang&rft.date=2024-06-01&rft.volume=11&rft.issue=24&rft.spage=e2309927&rft.epage=n/a&rft.pages=e2309927-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202309927&rft_dat=%3Cproquest_doaj_%3E2968922826%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5747-35e973a3e1c8d34f7035897512645b5ba00013c7d011af7e3916b122e77e4e8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072141899&rft_id=info:pmid/38498774&rfr_iscdi=true