Loading…
Energy Performance of Room Air-Conditioners and Ceiling Fans in Mixed-Mode Buildings
Studies show that people can tolerate elevated temperatures in the presence of appreciable air movement (e.g., from using ceiling fans). This minimises the use of air-conditioners and extends their set-point temperature (Tset), resulting in energy savings in space cooling. However, there is little e...
Saved in:
Published in: | Energies (Basel) 2023-10, Vol.16 (19), p.6807 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Studies show that people can tolerate elevated temperatures in the presence of appreciable air movement (e.g., from using ceiling fans). This minimises the use of air-conditioners and extends their set-point temperature (Tset), resulting in energy savings in space cooling. However, there is little empirical evidence on the energy savings from using ceiling fans with Room Air-Conditioners (RACs). To address this gap, we analysed the energy performance of RACs with both fixed-speed compressors and inverter technology at different set-point temperatures and ceiling fan speed settings in 15 residential Mixed-Mode Buildings (MMBs) in India. Thermal comfort conditions (as predicted by the Indian Model for Adaptive Comfort-Residential (IMAC-R)) with minimum energy consumption were maintained at a set-point temperature (Tset) of 28 and 30 ∘C and a fan speed setting of one. Compared with a Tset of 24 °C, a Tset of 28 and 30 °C resulted in energy savings of 44 and 67%, respectively. With the use of RACs, a configuration with a minimum fan speed was satisfactory for an optimal use of energy and for maintaining the conditions of thermal comfort. In addition, RACs with inverter technology used 34–68% less energy than fixed-speed compressors. With the rising use of RACs, particularly in tropical regions, the study’s outcomes offer a significant potential for reducing space-cooling energy consumption and the resultant greenhouse gas (GHG) emissions. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16196807 |