Loading…
Estimation of the Knee Adduction Moment and Joint Contact Force during Daily Living Activities Using Inertial Motion Capture
Knee osteoarthritis is a major cause of pain and disability in the elderly population with many daily living activities being difficult to perform as a result of this disease. The present study aimed to estimate the knee adduction moment and tibiofemoral joint contact force during daily living activ...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-04, Vol.19 (7), p.1681 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Knee osteoarthritis is a major cause of pain and disability in the elderly population with many daily living activities being difficult to perform as a result of this disease. The present study aimed to estimate the knee adduction moment and tibiofemoral joint contact force during daily living activities using a musculoskeletal model with inertial motion capture derived kinematics in an elderly population. Eight elderly participants were instrumented with 17 inertial measurement units, as well as 53 opto-reflective markers affixed to anatomical landmarks. Participants performed stair ascent, stair descent, and sit-to-stand movements while both motion capture methods were synchronously recorded. A musculoskeletal model containing 39 degrees-of-freedom was used to estimate the knee adduction moment and tibiofemoral joint contact force. Strong to excellent Pearson correlation coefficients were found for the IMC-derived kinematics across the daily living tasks with root mean square errors (RMSE) between 3° and 7°. Furthermore, moderate to strong Pearson correlation coefficients were found in the knee adduction moment and tibiofemoral joint contact forces with RMSE between 0.006⁻0.014 body weight × body height and 0.4 to 1 body weights, respectively. These findings demonstrate that inertial motion capture may be used to estimate knee adduction moments and tibiofemoral contact forces with comparable accuracy to optical motion capture. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19071681 |