Loading…
A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems
We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorith...
Saved in:
Published in: | Fractal and fractional 2021-09, Vol.5 (3), p.110 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23 |
container_end_page | |
container_issue | 3 |
container_start_page | 110 |
container_title | Fractal and fractional |
container_volume | 5 |
creator | Mishra, Shashi Kant Rajković, Predrag Samei, Mohammad Esmael Chakraborty, Suvra Kanti Ram, Bhagwat Kaabar, Mohammed K. A. |
description | We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method. |
doi_str_mv | 10.3390/fractalfract5030110 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7435d9e2408840c8ae36a7348102cde9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7435d9e2408840c8ae36a7348102cde9</doaj_id><sourcerecordid>2576411479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</originalsourceid><addsrcrecordid>eNptkcFqGzEQhpfQQEOSJ-hF0PO2o5VkaY_GbdJAICkkZzEezToy65UjyS3NG_U5-mK141J66GW-n-Hnn4G_ad5J-KBUDx-HjFRxfIUBBVLCSXPWGdCt2us3_-i3zWUpawDobK8M2LMmzMVze50xRJ6q-MSFDpyPq5RjfdqI7_spvu6wxPaK179-ZrFI0zfOK56IxZCyeJwoTaVmjBMHcbetcRNfsMY0ifucliNvykVzOuBY-PIPz5vHq88Piy_t7d31zWJ-25Jyrra9NdQPBL0ismAkLIHIBEc8gFPOAMMsLJF6gzpItGidxDDQUho9SO7UeXNzzA0J136b4wbzD58w-tdFyiuPuUYa2VutTOi50-CcBnLIaoZWaSeho8D9Puv9MWub0_OOS_XrtMvT_n3fGTvTUmp7cKmji3IqJfPw96oEf2jH_6cd9RtS6IcE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576411479</pqid></control><display><type>article</type><title>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</title><source>Publicly Available Content (ProQuest)</source><creator>Mishra, Shashi Kant ; Rajković, Predrag ; Samei, Mohammad Esmael ; Chakraborty, Suvra Kanti ; Ram, Bhagwat ; Kaabar, Mohammed K. A.</creator><creatorcontrib>Mishra, Shashi Kant ; Rajković, Predrag ; Samei, Mohammad Esmael ; Chakraborty, Suvra Kanti ; Ram, Bhagwat ; Kaabar, Mohammed K. A.</creatorcontrib><description>We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract5030110</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Calculus ; Convergence ; descent methods ; inexact line searches ; iterative methods ; Optimization ; Optimization algorithms ; q-calculus ; Standard deviation</subject><ispartof>Fractal and fractional, 2021-09, Vol.5 (3), p.110</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</citedby><cites>FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</cites><orcidid>0000-0001-7279-4493 ; 0000-0003-2260-0341 ; 0000-0002-2914-0985 ; 0000-0002-1245-7839 ; 0000-0002-0337-6754 ; 0000-0002-5450-3127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576411479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576411479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Mishra, Shashi Kant</creatorcontrib><creatorcontrib>Rajković, Predrag</creatorcontrib><creatorcontrib>Samei, Mohammad Esmael</creatorcontrib><creatorcontrib>Chakraborty, Suvra Kanti</creatorcontrib><creatorcontrib>Ram, Bhagwat</creatorcontrib><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><title>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</title><title>Fractal and fractional</title><description>We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method.</description><subject>Algorithms</subject><subject>Calculus</subject><subject>Convergence</subject><subject>descent methods</subject><subject>inexact line searches</subject><subject>iterative methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>q-calculus</subject><subject>Standard deviation</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkcFqGzEQhpfQQEOSJ-hF0PO2o5VkaY_GbdJAICkkZzEezToy65UjyS3NG_U5-mK141J66GW-n-Hnn4G_ad5J-KBUDx-HjFRxfIUBBVLCSXPWGdCt2us3_-i3zWUpawDobK8M2LMmzMVze50xRJ6q-MSFDpyPq5RjfdqI7_spvu6wxPaK179-ZrFI0zfOK56IxZCyeJwoTaVmjBMHcbetcRNfsMY0ifucliNvykVzOuBY-PIPz5vHq88Piy_t7d31zWJ-25Jyrra9NdQPBL0ismAkLIHIBEc8gFPOAMMsLJF6gzpItGidxDDQUho9SO7UeXNzzA0J136b4wbzD58w-tdFyiuPuUYa2VutTOi50-CcBnLIaoZWaSeho8D9Puv9MWub0_OOS_XrtMvT_n3fGTvTUmp7cKmji3IqJfPw96oEf2jH_6cd9RtS6IcE</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Mishra, Shashi Kant</creator><creator>Rajković, Predrag</creator><creator>Samei, Mohammad Esmael</creator><creator>Chakraborty, Suvra Kanti</creator><creator>Ram, Bhagwat</creator><creator>Kaabar, Mohammed K. A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7279-4493</orcidid><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0002-2914-0985</orcidid><orcidid>https://orcid.org/0000-0002-1245-7839</orcidid><orcidid>https://orcid.org/0000-0002-0337-6754</orcidid><orcidid>https://orcid.org/0000-0002-5450-3127</orcidid></search><sort><creationdate>20210901</creationdate><title>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</title><author>Mishra, Shashi Kant ; Rajković, Predrag ; Samei, Mohammad Esmael ; Chakraborty, Suvra Kanti ; Ram, Bhagwat ; Kaabar, Mohammed K. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Calculus</topic><topic>Convergence</topic><topic>descent methods</topic><topic>inexact line searches</topic><topic>iterative methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>q-calculus</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Shashi Kant</creatorcontrib><creatorcontrib>Rajković, Predrag</creatorcontrib><creatorcontrib>Samei, Mohammad Esmael</creatorcontrib><creatorcontrib>Chakraborty, Suvra Kanti</creatorcontrib><creatorcontrib>Ram, Bhagwat</creatorcontrib><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Shashi Kant</au><au>Rajković, Predrag</au><au>Samei, Mohammad Esmael</au><au>Chakraborty, Suvra Kanti</au><au>Ram, Bhagwat</au><au>Kaabar, Mohammed K. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</atitle><jtitle>Fractal and fractional</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>5</volume><issue>3</issue><spage>110</spage><pages>110-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract5030110</doi><orcidid>https://orcid.org/0000-0001-7279-4493</orcidid><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0002-2914-0985</orcidid><orcidid>https://orcid.org/0000-0002-1245-7839</orcidid><orcidid>https://orcid.org/0000-0002-0337-6754</orcidid><orcidid>https://orcid.org/0000-0002-5450-3127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2021-09, Vol.5 (3), p.110 |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7435d9e2408840c8ae36a7348102cde9 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Calculus Convergence descent methods inexact line searches iterative methods Optimization Optimization algorithms q-calculus Standard deviation |
title | A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20q-Gradient%20Descent%20Algorithm%20with%20Quasi-Fej%C3%A9r%20Convergence%20for%20Unconstrained%20Optimization%20Problems&rft.jtitle=Fractal%20and%20fractional&rft.au=Mishra,%20Shashi%20Kant&rft.date=2021-09-01&rft.volume=5&rft.issue=3&rft.spage=110&rft.pages=110-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract5030110&rft_dat=%3Cproquest_doaj_%3E2576411479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576411479&rft_id=info:pmid/&rfr_iscdi=true |