Loading…

A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems

We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorith...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional 2021-09, Vol.5 (3), p.110
Main Authors: Mishra, Shashi Kant, Rajković, Predrag, Samei, Mohammad Esmael, Chakraborty, Suvra Kanti, Ram, Bhagwat, Kaabar, Mohammed K. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23
cites cdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23
container_end_page
container_issue 3
container_start_page 110
container_title Fractal and fractional
container_volume 5
creator Mishra, Shashi Kant
Rajković, Predrag
Samei, Mohammad Esmael
Chakraborty, Suvra Kanti
Ram, Bhagwat
Kaabar, Mohammed K. A.
description We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method.
doi_str_mv 10.3390/fractalfract5030110
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7435d9e2408840c8ae36a7348102cde9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7435d9e2408840c8ae36a7348102cde9</doaj_id><sourcerecordid>2576411479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</originalsourceid><addsrcrecordid>eNptkcFqGzEQhpfQQEOSJ-hF0PO2o5VkaY_GbdJAICkkZzEezToy65UjyS3NG_U5-mK141J66GW-n-Hnn4G_ad5J-KBUDx-HjFRxfIUBBVLCSXPWGdCt2us3_-i3zWUpawDobK8M2LMmzMVze50xRJ6q-MSFDpyPq5RjfdqI7_spvu6wxPaK179-ZrFI0zfOK56IxZCyeJwoTaVmjBMHcbetcRNfsMY0ifucliNvykVzOuBY-PIPz5vHq88Piy_t7d31zWJ-25Jyrra9NdQPBL0ismAkLIHIBEc8gFPOAMMsLJF6gzpItGidxDDQUho9SO7UeXNzzA0J136b4wbzD58w-tdFyiuPuUYa2VutTOi50-CcBnLIaoZWaSeho8D9Puv9MWub0_OOS_XrtMvT_n3fGTvTUmp7cKmji3IqJfPw96oEf2jH_6cd9RtS6IcE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576411479</pqid></control><display><type>article</type><title>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</title><source>Publicly Available Content (ProQuest)</source><creator>Mishra, Shashi Kant ; Rajković, Predrag ; Samei, Mohammad Esmael ; Chakraborty, Suvra Kanti ; Ram, Bhagwat ; Kaabar, Mohammed K. A.</creator><creatorcontrib>Mishra, Shashi Kant ; Rajković, Predrag ; Samei, Mohammad Esmael ; Chakraborty, Suvra Kanti ; Ram, Bhagwat ; Kaabar, Mohammed K. A.</creatorcontrib><description>We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract5030110</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Calculus ; Convergence ; descent methods ; inexact line searches ; iterative methods ; Optimization ; Optimization algorithms ; q-calculus ; Standard deviation</subject><ispartof>Fractal and fractional, 2021-09, Vol.5 (3), p.110</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</citedby><cites>FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</cites><orcidid>0000-0001-7279-4493 ; 0000-0003-2260-0341 ; 0000-0002-2914-0985 ; 0000-0002-1245-7839 ; 0000-0002-0337-6754 ; 0000-0002-5450-3127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576411479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576411479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Mishra, Shashi Kant</creatorcontrib><creatorcontrib>Rajković, Predrag</creatorcontrib><creatorcontrib>Samei, Mohammad Esmael</creatorcontrib><creatorcontrib>Chakraborty, Suvra Kanti</creatorcontrib><creatorcontrib>Ram, Bhagwat</creatorcontrib><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><title>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</title><title>Fractal and fractional</title><description>We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method.</description><subject>Algorithms</subject><subject>Calculus</subject><subject>Convergence</subject><subject>descent methods</subject><subject>inexact line searches</subject><subject>iterative methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>q-calculus</subject><subject>Standard deviation</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkcFqGzEQhpfQQEOSJ-hF0PO2o5VkaY_GbdJAICkkZzEezToy65UjyS3NG_U5-mK141J66GW-n-Hnn4G_ad5J-KBUDx-HjFRxfIUBBVLCSXPWGdCt2us3_-i3zWUpawDobK8M2LMmzMVze50xRJ6q-MSFDpyPq5RjfdqI7_spvu6wxPaK179-ZrFI0zfOK56IxZCyeJwoTaVmjBMHcbetcRNfsMY0ifucliNvykVzOuBY-PIPz5vHq88Piy_t7d31zWJ-25Jyrra9NdQPBL0ismAkLIHIBEc8gFPOAMMsLJF6gzpItGidxDDQUho9SO7UeXNzzA0J136b4wbzD58w-tdFyiuPuUYa2VutTOi50-CcBnLIaoZWaSeho8D9Puv9MWub0_OOS_XrtMvT_n3fGTvTUmp7cKmji3IqJfPw96oEf2jH_6cd9RtS6IcE</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Mishra, Shashi Kant</creator><creator>Rajković, Predrag</creator><creator>Samei, Mohammad Esmael</creator><creator>Chakraborty, Suvra Kanti</creator><creator>Ram, Bhagwat</creator><creator>Kaabar, Mohammed K. A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7279-4493</orcidid><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0002-2914-0985</orcidid><orcidid>https://orcid.org/0000-0002-1245-7839</orcidid><orcidid>https://orcid.org/0000-0002-0337-6754</orcidid><orcidid>https://orcid.org/0000-0002-5450-3127</orcidid></search><sort><creationdate>20210901</creationdate><title>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</title><author>Mishra, Shashi Kant ; Rajković, Predrag ; Samei, Mohammad Esmael ; Chakraborty, Suvra Kanti ; Ram, Bhagwat ; Kaabar, Mohammed K. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Calculus</topic><topic>Convergence</topic><topic>descent methods</topic><topic>inexact line searches</topic><topic>iterative methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>q-calculus</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Shashi Kant</creatorcontrib><creatorcontrib>Rajković, Predrag</creatorcontrib><creatorcontrib>Samei, Mohammad Esmael</creatorcontrib><creatorcontrib>Chakraborty, Suvra Kanti</creatorcontrib><creatorcontrib>Ram, Bhagwat</creatorcontrib><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Shashi Kant</au><au>Rajković, Predrag</au><au>Samei, Mohammad Esmael</au><au>Chakraborty, Suvra Kanti</au><au>Ram, Bhagwat</au><au>Kaabar, Mohammed K. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems</atitle><jtitle>Fractal and fractional</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>5</volume><issue>3</issue><spage>110</spage><pages>110-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>We present an algorithm for solving unconstrained optimization problems based on the q-gradient vector. The main idea used in the algorithm construction is the approximation of the classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence of the algorithm is proved. The proposed method does not require the boundedness assumption on any level set. Further, numerical experiments are reported to show the performance of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract5030110</doi><orcidid>https://orcid.org/0000-0001-7279-4493</orcidid><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0002-2914-0985</orcidid><orcidid>https://orcid.org/0000-0002-1245-7839</orcidid><orcidid>https://orcid.org/0000-0002-0337-6754</orcidid><orcidid>https://orcid.org/0000-0002-5450-3127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-3110
ispartof Fractal and fractional, 2021-09, Vol.5 (3), p.110
issn 2504-3110
2504-3110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7435d9e2408840c8ae36a7348102cde9
source Publicly Available Content (ProQuest)
subjects Algorithms
Calculus
Convergence
descent methods
inexact line searches
iterative methods
Optimization
Optimization algorithms
q-calculus
Standard deviation
title A q-Gradient Descent Algorithm with Quasi-Fejér Convergence for Unconstrained Optimization Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20q-Gradient%20Descent%20Algorithm%20with%20Quasi-Fej%C3%A9r%20Convergence%20for%20Unconstrained%20Optimization%20Problems&rft.jtitle=Fractal%20and%20fractional&rft.au=Mishra,%20Shashi%20Kant&rft.date=2021-09-01&rft.volume=5&rft.issue=3&rft.spage=110&rft.pages=110-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract5030110&rft_dat=%3Cproquest_doaj_%3E2576411479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-975c9fc093cc70510b0cc5d8cef083850e06dbac95a4d1a7a781adfcb154f1e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576411479&rft_id=info:pmid/&rfr_iscdi=true