Loading…
Brain information processing capacity modeling
Neurophysiological measurements suggest that human information processing is evinced by neuronal activity. However, the quantitative relationship between the activity of a brain region and its information processing capacity remains unclear. We introduce and validate a mathematical model of the info...
Saved in:
Published in: | Scientific reports 2022-02, Vol.12 (1), p.2174-2174, Article 2174 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neurophysiological measurements suggest that human information processing is evinced by neuronal activity. However, the quantitative relationship between the activity of a brain region and its information processing capacity remains unclear. We introduce and validate a mathematical model of the information processing capacity of a brain region in terms of neuronal activity, input storage capacity, and the arrival rate of afferent information. We applied the model to fMRI data obtained from a flanker paradigm in young and old subjects. Our analysis showed that—for a given cognitive task and subject—higher information processing capacity leads to lower neuronal activity and faster responses. Crucially, processing capacity—as estimated from fMRI data—predicted task and age-related differences in reaction times, speaking to the model’s predictive validity. This model offers a framework for modelling of brain dynamics in terms of information processing capacity, and may be exploited for studies of predictive coding and Bayes-optimal decision-making. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-05870-z |