Loading…

Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2

Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5737-5737, Article 5737
Main Authors: Abramov, Artem N., Chestnov, Igor Y., Alimova, Ekaterina S., Ivanova, Tatiana, Mukhin, Ivan S., Krizhanovskii, Dmitry N., Shelykh, Ivan A., Iorsh, Ivan V., Kravtsov, Vasily
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-5b59c078c5d7aff18f5111685469261f776700385ba3f4c86beff19cf943a3213
cites cdi_FETCH-LOGICAL-c518t-5b59c078c5d7aff18f5111685469261f776700385ba3f4c86beff19cf943a3213
container_end_page 5737
container_issue 1
container_start_page 5737
container_title Nature communications
container_volume 14
creator Abramov, Artem N.
Chestnov, Igor Y.
Alimova, Ekaterina S.
Ivanova, Tatiana
Mukhin, Ivan S.
Krizhanovskii, Dmitry N.
Shelykh, Ivan A.
Iorsh, Ivan V.
Kravtsov, Vasily
description Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further efforts in their deterministic integration with nanophotonic structures for developing practical on-chip sources of quantum light. Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe 2 via nanoindentation. Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale and reconstruct the details of the surrounding local strain potential. The obtained results suggest that the origin of the observed single-photon emission is likely related to strain-induced spectral shift of dark excitonic states and their hybridization with localized states of individual defects. Here, the authors correlate the position and spectral emission properties of single photon emitters in monolayer WSe 2 with the surrounding local strain potential by combining deep-subwavelength photoluminescence imaging and atomic force microscopy, providing insights on the microscopic mechanisms behind the formation of the quantum emitters.
doi_str_mv 10.1038/s41467-023-41292-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_744bf64f668b4412953830385485e51c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_744bf64f668b4412953830385485e51c</doaj_id><sourcerecordid>2865783094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-5b59c078c5d7aff18f5111685469261f776700385ba3f4c86beff19cf943a3213</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi1ERaulf4BTJC5cUjL-zgmhCmilSiDRqkfL8dpZrxJ7sZOi_nucTQWUA76MNX7n8czoRegNNBfQEPk-U6Bc1A0mNQXc4rp9gc5wQ6EGgcnLv-6n6DznfVMOaUFS-gqdEiGASsLPkPu2i1Mc5tEHm40NxlZ-1L0PfRVdlUscbHVYNKGyo58mm3L10087H6qgQ8xGF0Geki6JQ4rODzZX5T7GEAf9aFN1_93i1-jE6SHb86e4QXefP91eXtU3X79cX368qQ0DOdWsY61phDRsK7RzIB0DAC4Z5S3m4ITgoowhWaeJo0byzhZVa1xLiSYYyAZdr9xt1Ht1SGWW9Kii9uqYiKlXOk3eDFYJSjvHqeNcdnRZISOSLGwqmWVgCuvDyjrM3Wi3ZTllyuEZ9PlL8DvVxwcFDWsoprgQ3j0RUvwx2zyp0ZclD4MONs5ZYcmZKJ-W7jfo7T_SfZxTKLs6qoAyIAsQryqTYs7Jut_dQKMWW6jVFqrYQh1todpSRNaiXMSht-kP-j9VvwBYj7iM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865145132</pqid></control><display><type>article</type><title>Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Abramov, Artem N. ; Chestnov, Igor Y. ; Alimova, Ekaterina S. ; Ivanova, Tatiana ; Mukhin, Ivan S. ; Krizhanovskii, Dmitry N. ; Shelykh, Ivan A. ; Iorsh, Ivan V. ; Kravtsov, Vasily</creator><creatorcontrib>Abramov, Artem N. ; Chestnov, Igor Y. ; Alimova, Ekaterina S. ; Ivanova, Tatiana ; Mukhin, Ivan S. ; Krizhanovskii, Dmitry N. ; Shelykh, Ivan A. ; Iorsh, Ivan V. ; Kravtsov, Vasily</creatorcontrib><description>Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further efforts in their deterministic integration with nanophotonic structures for developing practical on-chip sources of quantum light. Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe 2 via nanoindentation. Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale and reconstruct the details of the surrounding local strain potential. The obtained results suggest that the origin of the observed single-photon emission is likely related to strain-induced spectral shift of dark excitonic states and their hybridization with localized states of individual defects. Here, the authors correlate the position and spectral emission properties of single photon emitters in monolayer WSe 2 with the surrounding local strain potential by combining deep-subwavelength photoluminescence imaging and atomic force microscopy, providing insights on the microscopic mechanisms behind the formation of the quantum emitters.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41292-9</identifier><identifier>PMID: 37714836</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/1018 ; 639/624/399/1017 ; 639/925/930/2735 ; Atomic force microscopy ; Emissions ; Emitters ; Humanities and Social Sciences ; Hybridization ; Imaging ; Luminescence ; Mechanical properties ; Microscopy ; Monolayers ; multidisciplinary ; Nanoindentation ; Photoluminescence ; Photon emission ; Photons ; Science ; Science (multidisciplinary) ; Spectral emission ; Spectral emittance</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5737-5737, Article 5737</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-5b59c078c5d7aff18f5111685469261f776700385ba3f4c86beff19cf943a3213</citedby><cites>FETCH-LOGICAL-c518t-5b59c078c5d7aff18f5111685469261f776700385ba3f4c86beff19cf943a3213</cites><orcidid>0000-0003-4992-6122 ; 0000-0002-3555-1027 ; 0000-0002-6436-7384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2865145132/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865145132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Abramov, Artem N.</creatorcontrib><creatorcontrib>Chestnov, Igor Y.</creatorcontrib><creatorcontrib>Alimova, Ekaterina S.</creatorcontrib><creatorcontrib>Ivanova, Tatiana</creatorcontrib><creatorcontrib>Mukhin, Ivan S.</creatorcontrib><creatorcontrib>Krizhanovskii, Dmitry N.</creatorcontrib><creatorcontrib>Shelykh, Ivan A.</creatorcontrib><creatorcontrib>Iorsh, Ivan V.</creatorcontrib><creatorcontrib>Kravtsov, Vasily</creatorcontrib><title>Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further efforts in their deterministic integration with nanophotonic structures for developing practical on-chip sources of quantum light. Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe 2 via nanoindentation. Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale and reconstruct the details of the surrounding local strain potential. The obtained results suggest that the origin of the observed single-photon emission is likely related to strain-induced spectral shift of dark excitonic states and their hybridization with localized states of individual defects. Here, the authors correlate the position and spectral emission properties of single photon emitters in monolayer WSe 2 with the surrounding local strain potential by combining deep-subwavelength photoluminescence imaging and atomic force microscopy, providing insights on the microscopic mechanisms behind the formation of the quantum emitters.</description><subject>639/301/357/1018</subject><subject>639/624/399/1017</subject><subject>639/925/930/2735</subject><subject>Atomic force microscopy</subject><subject>Emissions</subject><subject>Emitters</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization</subject><subject>Imaging</subject><subject>Luminescence</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Monolayers</subject><subject>multidisciplinary</subject><subject>Nanoindentation</subject><subject>Photoluminescence</subject><subject>Photon emission</subject><subject>Photons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectral emission</subject><subject>Spectral emittance</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhi1ERaulf4BTJC5cUjL-zgmhCmilSiDRqkfL8dpZrxJ7sZOi_nucTQWUA76MNX7n8czoRegNNBfQEPk-U6Bc1A0mNQXc4rp9gc5wQ6EGgcnLv-6n6DznfVMOaUFS-gqdEiGASsLPkPu2i1Mc5tEHm40NxlZ-1L0PfRVdlUscbHVYNKGyo58mm3L10087H6qgQ8xGF0Geki6JQ4rODzZX5T7GEAf9aFN1_93i1-jE6SHb86e4QXefP91eXtU3X79cX368qQ0DOdWsY61phDRsK7RzIB0DAC4Z5S3m4ITgoowhWaeJo0byzhZVa1xLiSYYyAZdr9xt1Ht1SGWW9Kii9uqYiKlXOk3eDFYJSjvHqeNcdnRZISOSLGwqmWVgCuvDyjrM3Wi3ZTllyuEZ9PlL8DvVxwcFDWsoprgQ3j0RUvwx2zyp0ZclD4MONs5ZYcmZKJ-W7jfo7T_SfZxTKLs6qoAyIAsQryqTYs7Jut_dQKMWW6jVFqrYQh1todpSRNaiXMSht-kP-j9VvwBYj7iM</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Abramov, Artem N.</creator><creator>Chestnov, Igor Y.</creator><creator>Alimova, Ekaterina S.</creator><creator>Ivanova, Tatiana</creator><creator>Mukhin, Ivan S.</creator><creator>Krizhanovskii, Dmitry N.</creator><creator>Shelykh, Ivan A.</creator><creator>Iorsh, Ivan V.</creator><creator>Kravtsov, Vasily</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4992-6122</orcidid><orcidid>https://orcid.org/0000-0002-3555-1027</orcidid><orcidid>https://orcid.org/0000-0002-6436-7384</orcidid></search><sort><creationdate>20230915</creationdate><title>Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2</title><author>Abramov, Artem N. ; Chestnov, Igor Y. ; Alimova, Ekaterina S. ; Ivanova, Tatiana ; Mukhin, Ivan S. ; Krizhanovskii, Dmitry N. ; Shelykh, Ivan A. ; Iorsh, Ivan V. ; Kravtsov, Vasily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-5b59c078c5d7aff18f5111685469261f776700385ba3f4c86beff19cf943a3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/357/1018</topic><topic>639/624/399/1017</topic><topic>639/925/930/2735</topic><topic>Atomic force microscopy</topic><topic>Emissions</topic><topic>Emitters</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization</topic><topic>Imaging</topic><topic>Luminescence</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Monolayers</topic><topic>multidisciplinary</topic><topic>Nanoindentation</topic><topic>Photoluminescence</topic><topic>Photon emission</topic><topic>Photons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectral emission</topic><topic>Spectral emittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramov, Artem N.</creatorcontrib><creatorcontrib>Chestnov, Igor Y.</creatorcontrib><creatorcontrib>Alimova, Ekaterina S.</creatorcontrib><creatorcontrib>Ivanova, Tatiana</creatorcontrib><creatorcontrib>Mukhin, Ivan S.</creatorcontrib><creatorcontrib>Krizhanovskii, Dmitry N.</creatorcontrib><creatorcontrib>Shelykh, Ivan A.</creatorcontrib><creatorcontrib>Iorsh, Ivan V.</creatorcontrib><creatorcontrib>Kravtsov, Vasily</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramov, Artem N.</au><au>Chestnov, Igor Y.</au><au>Alimova, Ekaterina S.</au><au>Ivanova, Tatiana</au><au>Mukhin, Ivan S.</au><au>Krizhanovskii, Dmitry N.</au><au>Shelykh, Ivan A.</au><au>Iorsh, Ivan V.</au><au>Kravtsov, Vasily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-15</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5737</spage><epage>5737</epage><pages>5737-5737</pages><artnum>5737</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further efforts in their deterministic integration with nanophotonic structures for developing practical on-chip sources of quantum light. Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe 2 via nanoindentation. Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale and reconstruct the details of the surrounding local strain potential. The obtained results suggest that the origin of the observed single-photon emission is likely related to strain-induced spectral shift of dark excitonic states and their hybridization with localized states of individual defects. Here, the authors correlate the position and spectral emission properties of single photon emitters in monolayer WSe 2 with the surrounding local strain potential by combining deep-subwavelength photoluminescence imaging and atomic force microscopy, providing insights on the microscopic mechanisms behind the formation of the quantum emitters.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37714836</pmid><doi>10.1038/s41467-023-41292-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4992-6122</orcidid><orcidid>https://orcid.org/0000-0002-3555-1027</orcidid><orcidid>https://orcid.org/0000-0002-6436-7384</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-09, Vol.14 (1), p.5737-5737, Article 5737
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_744bf64f668b4412953830385485e51c
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/357/1018
639/624/399/1017
639/925/930/2735
Atomic force microscopy
Emissions
Emitters
Humanities and Social Sciences
Hybridization
Imaging
Luminescence
Mechanical properties
Microscopy
Monolayers
multidisciplinary
Nanoindentation
Photoluminescence
Photon emission
Photons
Science
Science (multidisciplinary)
Spectral emission
Spectral emittance
title Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoluminescence%20imaging%20of%20single%20photon%20emitters%20within%20nanoscale%20strain%20profiles%20in%20monolayer%20WSe2&rft.jtitle=Nature%20communications&rft.au=Abramov,%20Artem%20N.&rft.date=2023-09-15&rft.volume=14&rft.issue=1&rft.spage=5737&rft.epage=5737&rft.pages=5737-5737&rft.artnum=5737&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41292-9&rft_dat=%3Cproquest_doaj_%3E2865783094%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-5b59c078c5d7aff18f5111685469261f776700385ba3f4c86beff19cf943a3213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865145132&rft_id=info:pmid/37714836&rfr_iscdi=true