Loading…

Towards a representative reference for MRI-based human axon radius assessment using light microscopy

•A pipeline for automated estimation of ensemble mean axon radii at MRI voxel scale•Incorporation of 4 human white matter brain tissue samples for training and testing•Accurate mapping of the MRI-visible radius in the presence of staining heterogeneity•Includes 2 to 4 orders of magnitude more axons...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2022-04, Vol.249, p.118906-118906, Article 118906
Main Authors: Mordhorst, Laurin, Morozova, Maria, Papazoglou, Sebastian, Fricke, Björn, Oeschger, Jan Malte, Tabarin, Thibault, Rusch, Henriette, Jäger, Carsten, Geyer, Stefan, Weiskopf, Nikolaus, Morawski, Markus, Mohammadi, Siawoosh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-b5cea95181435f2c128d8e25f2ad7e1b11aeccc48c6aa134ada19c433e28ceff3
cites cdi_FETCH-LOGICAL-c573t-b5cea95181435f2c128d8e25f2ad7e1b11aeccc48c6aa134ada19c433e28ceff3
container_end_page 118906
container_issue
container_start_page 118906
container_title NeuroImage (Orlando, Fla.)
container_volume 249
creator Mordhorst, Laurin
Morozova, Maria
Papazoglou, Sebastian
Fricke, Björn
Oeschger, Jan Malte
Tabarin, Thibault
Rusch, Henriette
Jäger, Carsten
Geyer, Stefan
Weiskopf, Nikolaus
Morawski, Markus
Mohammadi, Siawoosh
description •A pipeline for automated estimation of ensemble mean axon radii at MRI voxel scale•Incorporation of 4 human white matter brain tissue samples for training and testing•Accurate mapping of the MRI-visible radius in the presence of staining heterogeneity•Includes 2 to 4 orders of magnitude more axons than the current gold standard (EM)•The pipeline enables validation of biophysical, MRI-based radius estimation models Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.
doi_str_mv 10.1016/j.neuroimage.2022.118906
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_744c60a25dc44e1b9bb5e48801297210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811922000362</els_id><doaj_id>oai_doaj_org_article_744c60a25dc44e1b9bb5e48801297210</doaj_id><sourcerecordid>2620080319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-b5cea95181435f2c128d8e25f2ad7e1b11aeccc48c6aa134ada19c433e28ceff3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEoqXwFZAlLlyyeBw7sY9Q8WelIiRUztbEnmy92sSLnRT67XHYUiQunDy2fm_G815VMeAb4NC-2W8mWlIMI-5oI7gQGwBtePuoOgduVG1UJx6vtWpqDWDOqmc57znnBqR-Wp01ijeiVea88tfxByafGbJEx0SZphnncEvlOlCiyREbYmKfv27rHjN5drOMODH8GSeW0IelSHOmnMeiZEsO044dwu5mZmNwKWYXj3fPqycDHjK9uD8vqm8f3l9ffqqvvnzcXr69qp3qmrnulSM0CjTIRg3CgdBekygl-o6gB0ByzkntWkRoJHoE42TTkNCOhqG5qLanvj7i3h5T8Sfd2YjB_n6IaWcxzcEdyHZSupajUN5JWXqbvlckteYgTCeAl16vT72OKX5fKM92DNnR4YATxSVb0QrONW_AFPTVP-g-Lmkqm65UB0IIIwulT9TqSi7uPnwQuF1TtXv7N1W7pmpPqRbpy_sBSz-SfxD-ibEA704AFXdvAyWbXViz8yGRm8v64f9TfgHOrrjf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627122294</pqid></control><display><type>article</type><title>Towards a representative reference for MRI-based human axon radius assessment using light microscopy</title><source>ScienceDirect Freedom Collection</source><creator>Mordhorst, Laurin ; Morozova, Maria ; Papazoglou, Sebastian ; Fricke, Björn ; Oeschger, Jan Malte ; Tabarin, Thibault ; Rusch, Henriette ; Jäger, Carsten ; Geyer, Stefan ; Weiskopf, Nikolaus ; Morawski, Markus ; Mohammadi, Siawoosh</creator><creatorcontrib>Mordhorst, Laurin ; Morozova, Maria ; Papazoglou, Sebastian ; Fricke, Björn ; Oeschger, Jan Malte ; Tabarin, Thibault ; Rusch, Henriette ; Jäger, Carsten ; Geyer, Stefan ; Weiskopf, Nikolaus ; Morawski, Markus ; Mohammadi, Siawoosh</creatorcontrib><description>•A pipeline for automated estimation of ensemble mean axon radii at MRI voxel scale•Incorporation of 4 human white matter brain tissue samples for training and testing•Accurate mapping of the MRI-visible radius in the presence of staining heterogeneity•Includes 2 to 4 orders of magnitude more axons than the current gold standard (EM)•The pipeline enables validation of biophysical, MRI-based radius estimation models Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2022.118906</identifier><identifier>PMID: 35032659</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Aged, 80 and over ; Anatomy ; Axon radii distribution ; Axons ; Axons - ultrastructure ; Brain ; Brain architecture ; Corpus callosum ; Cross microscopy ; Deep Learning ; Estimates ; Female ; Histology ; Humans ; Light microscopy ; Magnetic Resonance Imaging ; Male ; Microscopy ; Microscopy - methods ; Middle Aged ; MRI-based axon radius ; Nervous system ; Neuroanatomy ; Neuroimaging - methods ; Segmentation ; Variation ; White Matter - diagnostic imaging ; White Matter - ultrastructure</subject><ispartof>NeuroImage (Orlando, Fla.), 2022-04, Vol.249, p.118906-118906, Article 118906</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-b5cea95181435f2c128d8e25f2ad7e1b11aeccc48c6aa134ada19c433e28ceff3</citedby><cites>FETCH-LOGICAL-c573t-b5cea95181435f2c128d8e25f2ad7e1b11aeccc48c6aa134ada19c433e28ceff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35032659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordhorst, Laurin</creatorcontrib><creatorcontrib>Morozova, Maria</creatorcontrib><creatorcontrib>Papazoglou, Sebastian</creatorcontrib><creatorcontrib>Fricke, Björn</creatorcontrib><creatorcontrib>Oeschger, Jan Malte</creatorcontrib><creatorcontrib>Tabarin, Thibault</creatorcontrib><creatorcontrib>Rusch, Henriette</creatorcontrib><creatorcontrib>Jäger, Carsten</creatorcontrib><creatorcontrib>Geyer, Stefan</creatorcontrib><creatorcontrib>Weiskopf, Nikolaus</creatorcontrib><creatorcontrib>Morawski, Markus</creatorcontrib><creatorcontrib>Mohammadi, Siawoosh</creatorcontrib><title>Towards a representative reference for MRI-based human axon radius assessment using light microscopy</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>•A pipeline for automated estimation of ensemble mean axon radii at MRI voxel scale•Incorporation of 4 human white matter brain tissue samples for training and testing•Accurate mapping of the MRI-visible radius in the presence of staining heterogeneity•Includes 2 to 4 orders of magnitude more axons than the current gold standard (EM)•The pipeline enables validation of biophysical, MRI-based radius estimation models Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anatomy</subject><subject>Axon radii distribution</subject><subject>Axons</subject><subject>Axons - ultrastructure</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Corpus callosum</subject><subject>Cross microscopy</subject><subject>Deep Learning</subject><subject>Estimates</subject><subject>Female</subject><subject>Histology</subject><subject>Humans</subject><subject>Light microscopy</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Middle Aged</subject><subject>MRI-based axon radius</subject><subject>Nervous system</subject><subject>Neuroanatomy</subject><subject>Neuroimaging - methods</subject><subject>Segmentation</subject><subject>Variation</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - ultrastructure</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU9v1DAQxSMEoqXwFZAlLlyyeBw7sY9Q8WelIiRUztbEnmy92sSLnRT67XHYUiQunDy2fm_G815VMeAb4NC-2W8mWlIMI-5oI7gQGwBtePuoOgduVG1UJx6vtWpqDWDOqmc57znnBqR-Wp01ijeiVea88tfxByafGbJEx0SZphnncEvlOlCiyREbYmKfv27rHjN5drOMODH8GSeW0IelSHOmnMeiZEsO044dwu5mZmNwKWYXj3fPqycDHjK9uD8vqm8f3l9ffqqvvnzcXr69qp3qmrnulSM0CjTIRg3CgdBekygl-o6gB0ByzkntWkRoJHoE42TTkNCOhqG5qLanvj7i3h5T8Sfd2YjB_n6IaWcxzcEdyHZSupajUN5JWXqbvlckteYgTCeAl16vT72OKX5fKM92DNnR4YATxSVb0QrONW_AFPTVP-g-Lmkqm65UB0IIIwulT9TqSi7uPnwQuF1TtXv7N1W7pmpPqRbpy_sBSz-SfxD-ibEA704AFXdvAyWbXViz8yGRm8v64f9TfgHOrrjf</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Mordhorst, Laurin</creator><creator>Morozova, Maria</creator><creator>Papazoglou, Sebastian</creator><creator>Fricke, Björn</creator><creator>Oeschger, Jan Malte</creator><creator>Tabarin, Thibault</creator><creator>Rusch, Henriette</creator><creator>Jäger, Carsten</creator><creator>Geyer, Stefan</creator><creator>Weiskopf, Nikolaus</creator><creator>Morawski, Markus</creator><creator>Mohammadi, Siawoosh</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20220401</creationdate><title>Towards a representative reference for MRI-based human axon radius assessment using light microscopy</title><author>Mordhorst, Laurin ; Morozova, Maria ; Papazoglou, Sebastian ; Fricke, Björn ; Oeschger, Jan Malte ; Tabarin, Thibault ; Rusch, Henriette ; Jäger, Carsten ; Geyer, Stefan ; Weiskopf, Nikolaus ; Morawski, Markus ; Mohammadi, Siawoosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-b5cea95181435f2c128d8e25f2ad7e1b11aeccc48c6aa134ada19c433e28ceff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anatomy</topic><topic>Axon radii distribution</topic><topic>Axons</topic><topic>Axons - ultrastructure</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Corpus callosum</topic><topic>Cross microscopy</topic><topic>Deep Learning</topic><topic>Estimates</topic><topic>Female</topic><topic>Histology</topic><topic>Humans</topic><topic>Light microscopy</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Middle Aged</topic><topic>MRI-based axon radius</topic><topic>Nervous system</topic><topic>Neuroanatomy</topic><topic>Neuroimaging - methods</topic><topic>Segmentation</topic><topic>Variation</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordhorst, Laurin</creatorcontrib><creatorcontrib>Morozova, Maria</creatorcontrib><creatorcontrib>Papazoglou, Sebastian</creatorcontrib><creatorcontrib>Fricke, Björn</creatorcontrib><creatorcontrib>Oeschger, Jan Malte</creatorcontrib><creatorcontrib>Tabarin, Thibault</creatorcontrib><creatorcontrib>Rusch, Henriette</creatorcontrib><creatorcontrib>Jäger, Carsten</creatorcontrib><creatorcontrib>Geyer, Stefan</creatorcontrib><creatorcontrib>Weiskopf, Nikolaus</creatorcontrib><creatorcontrib>Morawski, Markus</creatorcontrib><creatorcontrib>Mohammadi, Siawoosh</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordhorst, Laurin</au><au>Morozova, Maria</au><au>Papazoglou, Sebastian</au><au>Fricke, Björn</au><au>Oeschger, Jan Malte</au><au>Tabarin, Thibault</au><au>Rusch, Henriette</au><au>Jäger, Carsten</au><au>Geyer, Stefan</au><au>Weiskopf, Nikolaus</au><au>Morawski, Markus</au><au>Mohammadi, Siawoosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a representative reference for MRI-based human axon radius assessment using light microscopy</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>249</volume><spage>118906</spage><epage>118906</epage><pages>118906-118906</pages><artnum>118906</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>•A pipeline for automated estimation of ensemble mean axon radii at MRI voxel scale•Incorporation of 4 human white matter brain tissue samples for training and testing•Accurate mapping of the MRI-visible radius in the presence of staining heterogeneity•Includes 2 to 4 orders of magnitude more axons than the current gold standard (EM)•The pipeline enables validation of biophysical, MRI-based radius estimation models Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35032659</pmid><doi>10.1016/j.neuroimage.2022.118906</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2022-04, Vol.249, p.118906-118906, Article 118906
issn 1053-8119
1095-9572
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_744c60a25dc44e1b9bb5e48801297210
source ScienceDirect Freedom Collection
subjects Aged
Aged, 80 and over
Anatomy
Axon radii distribution
Axons
Axons - ultrastructure
Brain
Brain architecture
Corpus callosum
Cross microscopy
Deep Learning
Estimates
Female
Histology
Humans
Light microscopy
Magnetic Resonance Imaging
Male
Microscopy
Microscopy - methods
Middle Aged
MRI-based axon radius
Nervous system
Neuroanatomy
Neuroimaging - methods
Segmentation
Variation
White Matter - diagnostic imaging
White Matter - ultrastructure
title Towards a representative reference for MRI-based human axon radius assessment using light microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20representative%20reference%20for%20MRI-based%20human%20axon%20radius%20assessment%20using%20light%20microscopy&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Mordhorst,%20Laurin&rft.date=2022-04-01&rft.volume=249&rft.spage=118906&rft.epage=118906&rft.pages=118906-118906&rft.artnum=118906&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2022.118906&rft_dat=%3Cproquest_doaj_%3E2620080319%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-b5cea95181435f2c128d8e25f2ad7e1b11aeccc48c6aa134ada19c433e28ceff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627122294&rft_id=info:pmid/35032659&rfr_iscdi=true