Loading…

Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts

With the shift of research focus to personalized medicine in Alzheimer's Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient's risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed e-infrastructure federating large...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neurology 2020-09, Vol.11, p.1021-1021
Main Authors: Redolfi, Alberto, De Francesco, Silvia, Palesi, Fulvia, Galluzzi, Samantha, Muscio, Cristina, Castellazzi, Gloria, Tiraboschi, Pietro, Savini, Giovanni, Nigri, Anna, Bottini, Gabriella, Bruzzone, Maria Grazia, Ramusino, Matteo Cotta, Ferraro, Stefania, Gandini Wheeler-Kingshott, Claudia A M, Tagliavini, Fabrizio, Frisoni, Giovanni B, Ryvlin, Philippe, Demonet, Jean-François, Kherif, Ferath, Cappa, Stefano F, D'Angelo, Egidio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-41565736953afd0d8e2bb5963ca61b48ab06e653ad3c5ac2f5a18140297e9ab33
cites cdi_FETCH-LOGICAL-c462t-41565736953afd0d8e2bb5963ca61b48ab06e653ad3c5ac2f5a18140297e9ab33
container_end_page 1021
container_issue
container_start_page 1021
container_title Frontiers in neurology
container_volume 11
creator Redolfi, Alberto
De Francesco, Silvia
Palesi, Fulvia
Galluzzi, Samantha
Muscio, Cristina
Castellazzi, Gloria
Tiraboschi, Pietro
Savini, Giovanni
Nigri, Anna
Bottini, Gabriella
Bruzzone, Maria Grazia
Ramusino, Matteo Cotta
Ferraro, Stefania
Gandini Wheeler-Kingshott, Claudia A M
Tagliavini, Fabrizio
Frisoni, Giovanni B
Ryvlin, Philippe
Demonet, Jean-François
Kherif, Ferath
Cappa, Stefano F
D'Angelo, Egidio
description With the shift of research focus to personalized medicine in Alzheimer's Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient's risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed e-infrastructure federating large amounts of data coupled with machine-learning (ML) algorithms and statistical models to define the biological signature of the disease. The present study assessed (i) the accuracy of two ML algorithms, i.e., supervised Gradient Boosting (GB) and semi-unsupervised 3C strategy (Categorize, Cluster, Classify-CCC) implemented in the MIP and (ii) their contribution over the standard diagnostic workup. We examined individuals coming from the MIP installed across 3 Italian memory clinics, including subjects with Normal Cognition (CN, = 432), Mild Cognitive Impairment (MCI, = 456), and AD ( = 451). The GB classifier was applied to best discriminate the three diagnostic classes in 1,339 subjects, and the CCC strategy was used to refine the classical disease categories. Four dementia experts provided their diagnostic confidence (DC) of MCI conversion on an independent cohort of 38 patients. DC was based on clinical, neuropsychological, CSF, and structural MRI information and again with addition of the outcome from the MIP tools. The GB algorithm provided a classification accuracy of 85% in a nested 10-fold cross-validation for CN vs. MCI vs. AD discrimination. Accuracy increased to 95% in the holdout validation, with the omission of each Italian clinical cohort out in turn. CCC identified five homogeneous clusters of subjects and 36 biomarkers that represented the disease fingerprint. In the DC assessment, CCC defined six clusters in the MCI population used to train the algorithm and 29 biomarkers to improve patients staging. GB and CCC showed a significant impact, evaluated as +5.99% of increment on physicians' DC. The influence of MIP on DC was rated from "slight" to "significant" in 80% of the cases. GB provided fair results in classification of CN, MCI, and AD. CCC identified homogeneous and promising classes of subjects via its semi-unsupervised approach. We measured the effect of the MIP on the physician's DC. Our results pave the way for the establishment of a new paradigm for ML discrimination of patients who will or will not convert to AD, a clinical priority for neurology.
doi_str_mv 10.3389/fneur.2020.01021
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_745fd21d6133415188340b5f95e4083c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_745fd21d6133415188340b5f95e4083c</doaj_id><sourcerecordid>2452097907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-41565736953afd0d8e2bb5963ca61b48ab06e653ad3c5ac2f5a18140297e9ab33</originalsourceid><addsrcrecordid>eNpVkU1vGyEQhlHVqonS3HuqOKYHu8AAu_RQybL6YSlRXbU9IxbYhAgvKbCV8u-L7TRKuAzMzPsM8CL0lpIlQK8-jJOf85IRRpaEEkZfoFMqJV8wpsTLJ_sTdF7KLWkLlAIJr9EJAOmoAnKKflx5F6yJeDONKe9MDbbgbTR1f8IXV5vt-494hbchpop_1tnd45XNqRS8jmE6KquJwUx4nW5SruUNejWaWPz5QzxDv798_rX-trj8_nWzXl0uLJesLjgVUnQglQAzOuJ6z4ZBKAnWSDrw3gxEetmKDqwwlo3C0J5ywlTnlRkAztDmyHXJ3Oq7HHYm3-tkgj4kUr7WJrfnRK87LkbHqJMUoM2lfQ-cDGJUwnPSg22sT0fW3TzsvLN-qtnEZ9DnlSnc6Ov0V3cCGkw2wMUDIKc_sy9V70KxPkYz-TQXzbhgRHWKdK2VHFsP35j9-DiGEr03Vh-M1Xtj9cHYJnn39HqPgv82wj_YQZ2Z</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452097907</pqid></control><display><type>article</type><title>Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts</title><source>PubMed Central</source><creator>Redolfi, Alberto ; De Francesco, Silvia ; Palesi, Fulvia ; Galluzzi, Samantha ; Muscio, Cristina ; Castellazzi, Gloria ; Tiraboschi, Pietro ; Savini, Giovanni ; Nigri, Anna ; Bottini, Gabriella ; Bruzzone, Maria Grazia ; Ramusino, Matteo Cotta ; Ferraro, Stefania ; Gandini Wheeler-Kingshott, Claudia A M ; Tagliavini, Fabrizio ; Frisoni, Giovanni B ; Ryvlin, Philippe ; Demonet, Jean-François ; Kherif, Ferath ; Cappa, Stefano F ; D'Angelo, Egidio</creator><creatorcontrib>Redolfi, Alberto ; De Francesco, Silvia ; Palesi, Fulvia ; Galluzzi, Samantha ; Muscio, Cristina ; Castellazzi, Gloria ; Tiraboschi, Pietro ; Savini, Giovanni ; Nigri, Anna ; Bottini, Gabriella ; Bruzzone, Maria Grazia ; Ramusino, Matteo Cotta ; Ferraro, Stefania ; Gandini Wheeler-Kingshott, Claudia A M ; Tagliavini, Fabrizio ; Frisoni, Giovanni B ; Ryvlin, Philippe ; Demonet, Jean-François ; Kherif, Ferath ; Cappa, Stefano F ; D'Angelo, Egidio</creatorcontrib><description>With the shift of research focus to personalized medicine in Alzheimer's Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient's risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed e-infrastructure federating large amounts of data coupled with machine-learning (ML) algorithms and statistical models to define the biological signature of the disease. The present study assessed (i) the accuracy of two ML algorithms, i.e., supervised Gradient Boosting (GB) and semi-unsupervised 3C strategy (Categorize, Cluster, Classify-CCC) implemented in the MIP and (ii) their contribution over the standard diagnostic workup. We examined individuals coming from the MIP installed across 3 Italian memory clinics, including subjects with Normal Cognition (CN, = 432), Mild Cognitive Impairment (MCI, = 456), and AD ( = 451). The GB classifier was applied to best discriminate the three diagnostic classes in 1,339 subjects, and the CCC strategy was used to refine the classical disease categories. Four dementia experts provided their diagnostic confidence (DC) of MCI conversion on an independent cohort of 38 patients. DC was based on clinical, neuropsychological, CSF, and structural MRI information and again with addition of the outcome from the MIP tools. The GB algorithm provided a classification accuracy of 85% in a nested 10-fold cross-validation for CN vs. MCI vs. AD discrimination. Accuracy increased to 95% in the holdout validation, with the omission of each Italian clinical cohort out in turn. CCC identified five homogeneous clusters of subjects and 36 biomarkers that represented the disease fingerprint. In the DC assessment, CCC defined six clusters in the MCI population used to train the algorithm and 29 biomarkers to improve patients staging. GB and CCC showed a significant impact, evaluated as +5.99% of increment on physicians' DC. The influence of MIP on DC was rated from "slight" to "significant" in 80% of the cases. GB provided fair results in classification of CN, MCI, and AD. CCC identified homogeneous and promising classes of subjects via its semi-unsupervised approach. We measured the effect of the MIP on the physician's DC. Our results pave the way for the establishment of a new paradigm for ML discrimination of patients who will or will not convert to AD, a clinical priority for neurology.</description><identifier>ISSN: 1664-2295</identifier><identifier>EISSN: 1664-2295</identifier><identifier>DOI: 10.3389/fneur.2020.01021</identifier><identifier>PMID: 33071930</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Alzheimer's Dementia (AD) ; biomarkers ; diagnostic confidence ; disease signature ; Medical Informatics Platform (MIP) ; Neurology</subject><ispartof>Frontiers in neurology, 2020-09, Vol.11, p.1021-1021</ispartof><rights>Copyright © 2020 Redolfi, De Francesco, Palesi, Galluzzi, Muscio, Castellazzi, Tiraboschi, Savini, Nigri, Bottini, Bruzzone, Ramusino, Ferraro, Gandini Wheeler-Kingshott, Tagliavini, Frisoni, Ryvlin, Demonet, Kherif, Cappa and D'Angelo.</rights><rights>Copyright © 2020 Redolfi, De Francesco, Palesi, Galluzzi, Muscio, Castellazzi, Tiraboschi, Savini, Nigri, Bottini, Bruzzone, Ramusino, Ferraro, Gandini Wheeler-Kingshott, Tagliavini, Frisoni, Ryvlin, Demonet, Kherif, Cappa and D'Angelo. 2020 Redolfi, De Francesco, Palesi, Galluzzi, Muscio, Castellazzi, Tiraboschi, Savini, Nigri, Bottini, Bruzzone, Ramusino, Ferraro, Gandini Wheeler-Kingshott, Tagliavini, Frisoni, Ryvlin, Demonet, Kherif, Cappa and D'Angelo</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-41565736953afd0d8e2bb5963ca61b48ab06e653ad3c5ac2f5a18140297e9ab33</citedby><cites>FETCH-LOGICAL-c462t-41565736953afd0d8e2bb5963ca61b48ab06e653ad3c5ac2f5a18140297e9ab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33071930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Redolfi, Alberto</creatorcontrib><creatorcontrib>De Francesco, Silvia</creatorcontrib><creatorcontrib>Palesi, Fulvia</creatorcontrib><creatorcontrib>Galluzzi, Samantha</creatorcontrib><creatorcontrib>Muscio, Cristina</creatorcontrib><creatorcontrib>Castellazzi, Gloria</creatorcontrib><creatorcontrib>Tiraboschi, Pietro</creatorcontrib><creatorcontrib>Savini, Giovanni</creatorcontrib><creatorcontrib>Nigri, Anna</creatorcontrib><creatorcontrib>Bottini, Gabriella</creatorcontrib><creatorcontrib>Bruzzone, Maria Grazia</creatorcontrib><creatorcontrib>Ramusino, Matteo Cotta</creatorcontrib><creatorcontrib>Ferraro, Stefania</creatorcontrib><creatorcontrib>Gandini Wheeler-Kingshott, Claudia A M</creatorcontrib><creatorcontrib>Tagliavini, Fabrizio</creatorcontrib><creatorcontrib>Frisoni, Giovanni B</creatorcontrib><creatorcontrib>Ryvlin, Philippe</creatorcontrib><creatorcontrib>Demonet, Jean-François</creatorcontrib><creatorcontrib>Kherif, Ferath</creatorcontrib><creatorcontrib>Cappa, Stefano F</creatorcontrib><creatorcontrib>D'Angelo, Egidio</creatorcontrib><title>Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts</title><title>Frontiers in neurology</title><addtitle>Front Neurol</addtitle><description>With the shift of research focus to personalized medicine in Alzheimer's Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient's risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed e-infrastructure federating large amounts of data coupled with machine-learning (ML) algorithms and statistical models to define the biological signature of the disease. The present study assessed (i) the accuracy of two ML algorithms, i.e., supervised Gradient Boosting (GB) and semi-unsupervised 3C strategy (Categorize, Cluster, Classify-CCC) implemented in the MIP and (ii) their contribution over the standard diagnostic workup. We examined individuals coming from the MIP installed across 3 Italian memory clinics, including subjects with Normal Cognition (CN, = 432), Mild Cognitive Impairment (MCI, = 456), and AD ( = 451). The GB classifier was applied to best discriminate the three diagnostic classes in 1,339 subjects, and the CCC strategy was used to refine the classical disease categories. Four dementia experts provided their diagnostic confidence (DC) of MCI conversion on an independent cohort of 38 patients. DC was based on clinical, neuropsychological, CSF, and structural MRI information and again with addition of the outcome from the MIP tools. The GB algorithm provided a classification accuracy of 85% in a nested 10-fold cross-validation for CN vs. MCI vs. AD discrimination. Accuracy increased to 95% in the holdout validation, with the omission of each Italian clinical cohort out in turn. CCC identified five homogeneous clusters of subjects and 36 biomarkers that represented the disease fingerprint. In the DC assessment, CCC defined six clusters in the MCI population used to train the algorithm and 29 biomarkers to improve patients staging. GB and CCC showed a significant impact, evaluated as +5.99% of increment on physicians' DC. The influence of MIP on DC was rated from "slight" to "significant" in 80% of the cases. GB provided fair results in classification of CN, MCI, and AD. CCC identified homogeneous and promising classes of subjects via its semi-unsupervised approach. We measured the effect of the MIP on the physician's DC. Our results pave the way for the establishment of a new paradigm for ML discrimination of patients who will or will not convert to AD, a clinical priority for neurology.</description><subject>Alzheimer's Dementia (AD)</subject><subject>biomarkers</subject><subject>diagnostic confidence</subject><subject>disease signature</subject><subject>Medical Informatics Platform (MIP)</subject><subject>Neurology</subject><issn>1664-2295</issn><issn>1664-2295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vGyEQhlHVqonS3HuqOKYHu8AAu_RQybL6YSlRXbU9IxbYhAgvKbCV8u-L7TRKuAzMzPsM8CL0lpIlQK8-jJOf85IRRpaEEkZfoFMqJV8wpsTLJ_sTdF7KLWkLlAIJr9EJAOmoAnKKflx5F6yJeDONKe9MDbbgbTR1f8IXV5vt-494hbchpop_1tnd45XNqRS8jmE6KquJwUx4nW5SruUNejWaWPz5QzxDv798_rX-trj8_nWzXl0uLJesLjgVUnQglQAzOuJ6z4ZBKAnWSDrw3gxEetmKDqwwlo3C0J5ywlTnlRkAztDmyHXJ3Oq7HHYm3-tkgj4kUr7WJrfnRK87LkbHqJMUoM2lfQ-cDGJUwnPSg22sT0fW3TzsvLN-qtnEZ9DnlSnc6Ov0V3cCGkw2wMUDIKc_sy9V70KxPkYz-TQXzbhgRHWKdK2VHFsP35j9-DiGEr03Vh-M1Xtj9cHYJnn39HqPgv82wj_YQZ2Z</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Redolfi, Alberto</creator><creator>De Francesco, Silvia</creator><creator>Palesi, Fulvia</creator><creator>Galluzzi, Samantha</creator><creator>Muscio, Cristina</creator><creator>Castellazzi, Gloria</creator><creator>Tiraboschi, Pietro</creator><creator>Savini, Giovanni</creator><creator>Nigri, Anna</creator><creator>Bottini, Gabriella</creator><creator>Bruzzone, Maria Grazia</creator><creator>Ramusino, Matteo Cotta</creator><creator>Ferraro, Stefania</creator><creator>Gandini Wheeler-Kingshott, Claudia A M</creator><creator>Tagliavini, Fabrizio</creator><creator>Frisoni, Giovanni B</creator><creator>Ryvlin, Philippe</creator><creator>Demonet, Jean-François</creator><creator>Kherif, Ferath</creator><creator>Cappa, Stefano F</creator><creator>D'Angelo, Egidio</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200923</creationdate><title>Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts</title><author>Redolfi, Alberto ; De Francesco, Silvia ; Palesi, Fulvia ; Galluzzi, Samantha ; Muscio, Cristina ; Castellazzi, Gloria ; Tiraboschi, Pietro ; Savini, Giovanni ; Nigri, Anna ; Bottini, Gabriella ; Bruzzone, Maria Grazia ; Ramusino, Matteo Cotta ; Ferraro, Stefania ; Gandini Wheeler-Kingshott, Claudia A M ; Tagliavini, Fabrizio ; Frisoni, Giovanni B ; Ryvlin, Philippe ; Demonet, Jean-François ; Kherif, Ferath ; Cappa, Stefano F ; D'Angelo, Egidio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-41565736953afd0d8e2bb5963ca61b48ab06e653ad3c5ac2f5a18140297e9ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's Dementia (AD)</topic><topic>biomarkers</topic><topic>diagnostic confidence</topic><topic>disease signature</topic><topic>Medical Informatics Platform (MIP)</topic><topic>Neurology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redolfi, Alberto</creatorcontrib><creatorcontrib>De Francesco, Silvia</creatorcontrib><creatorcontrib>Palesi, Fulvia</creatorcontrib><creatorcontrib>Galluzzi, Samantha</creatorcontrib><creatorcontrib>Muscio, Cristina</creatorcontrib><creatorcontrib>Castellazzi, Gloria</creatorcontrib><creatorcontrib>Tiraboschi, Pietro</creatorcontrib><creatorcontrib>Savini, Giovanni</creatorcontrib><creatorcontrib>Nigri, Anna</creatorcontrib><creatorcontrib>Bottini, Gabriella</creatorcontrib><creatorcontrib>Bruzzone, Maria Grazia</creatorcontrib><creatorcontrib>Ramusino, Matteo Cotta</creatorcontrib><creatorcontrib>Ferraro, Stefania</creatorcontrib><creatorcontrib>Gandini Wheeler-Kingshott, Claudia A M</creatorcontrib><creatorcontrib>Tagliavini, Fabrizio</creatorcontrib><creatorcontrib>Frisoni, Giovanni B</creatorcontrib><creatorcontrib>Ryvlin, Philippe</creatorcontrib><creatorcontrib>Demonet, Jean-François</creatorcontrib><creatorcontrib>Kherif, Ferath</creatorcontrib><creatorcontrib>Cappa, Stefano F</creatorcontrib><creatorcontrib>D'Angelo, Egidio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redolfi, Alberto</au><au>De Francesco, Silvia</au><au>Palesi, Fulvia</au><au>Galluzzi, Samantha</au><au>Muscio, Cristina</au><au>Castellazzi, Gloria</au><au>Tiraboschi, Pietro</au><au>Savini, Giovanni</au><au>Nigri, Anna</au><au>Bottini, Gabriella</au><au>Bruzzone, Maria Grazia</au><au>Ramusino, Matteo Cotta</au><au>Ferraro, Stefania</au><au>Gandini Wheeler-Kingshott, Claudia A M</au><au>Tagliavini, Fabrizio</au><au>Frisoni, Giovanni B</au><au>Ryvlin, Philippe</au><au>Demonet, Jean-François</au><au>Kherif, Ferath</au><au>Cappa, Stefano F</au><au>D'Angelo, Egidio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts</atitle><jtitle>Frontiers in neurology</jtitle><addtitle>Front Neurol</addtitle><date>2020-09-23</date><risdate>2020</risdate><volume>11</volume><spage>1021</spage><epage>1021</epage><pages>1021-1021</pages><issn>1664-2295</issn><eissn>1664-2295</eissn><abstract>With the shift of research focus to personalized medicine in Alzheimer's Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient's risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed e-infrastructure federating large amounts of data coupled with machine-learning (ML) algorithms and statistical models to define the biological signature of the disease. The present study assessed (i) the accuracy of two ML algorithms, i.e., supervised Gradient Boosting (GB) and semi-unsupervised 3C strategy (Categorize, Cluster, Classify-CCC) implemented in the MIP and (ii) their contribution over the standard diagnostic workup. We examined individuals coming from the MIP installed across 3 Italian memory clinics, including subjects with Normal Cognition (CN, = 432), Mild Cognitive Impairment (MCI, = 456), and AD ( = 451). The GB classifier was applied to best discriminate the three diagnostic classes in 1,339 subjects, and the CCC strategy was used to refine the classical disease categories. Four dementia experts provided their diagnostic confidence (DC) of MCI conversion on an independent cohort of 38 patients. DC was based on clinical, neuropsychological, CSF, and structural MRI information and again with addition of the outcome from the MIP tools. The GB algorithm provided a classification accuracy of 85% in a nested 10-fold cross-validation for CN vs. MCI vs. AD discrimination. Accuracy increased to 95% in the holdout validation, with the omission of each Italian clinical cohort out in turn. CCC identified five homogeneous clusters of subjects and 36 biomarkers that represented the disease fingerprint. In the DC assessment, CCC defined six clusters in the MCI population used to train the algorithm and 29 biomarkers to improve patients staging. GB and CCC showed a significant impact, evaluated as +5.99% of increment on physicians' DC. The influence of MIP on DC was rated from "slight" to "significant" in 80% of the cases. GB provided fair results in classification of CN, MCI, and AD. CCC identified homogeneous and promising classes of subjects via its semi-unsupervised approach. We measured the effect of the MIP on the physician's DC. Our results pave the way for the establishment of a new paradigm for ML discrimination of patients who will or will not convert to AD, a clinical priority for neurology.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33071930</pmid><doi>10.3389/fneur.2020.01021</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-2295
ispartof Frontiers in neurology, 2020-09, Vol.11, p.1021-1021
issn 1664-2295
1664-2295
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_745fd21d6133415188340b5f95e4083c
source PubMed Central
subjects Alzheimer's Dementia (AD)
biomarkers
diagnostic confidence
disease signature
Medical Informatics Platform (MIP)
Neurology
title Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20Informatics%20Platform%20(MIP):%20A%20Pilot%20Study%20Across%20Clinical%20Italian%20Cohorts&rft.jtitle=Frontiers%20in%20neurology&rft.au=Redolfi,%20Alberto&rft.date=2020-09-23&rft.volume=11&rft.spage=1021&rft.epage=1021&rft.pages=1021-1021&rft.issn=1664-2295&rft.eissn=1664-2295&rft_id=info:doi/10.3389/fneur.2020.01021&rft_dat=%3Cproquest_doaj_%3E2452097907%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-41565736953afd0d8e2bb5963ca61b48ab06e653ad3c5ac2f5a18140297e9ab33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2452097907&rft_id=info:pmid/33071930&rfr_iscdi=true