Loading…

TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals

Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solut...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.143149-143162
Main Authors: Mahim, S. M., Emamul Hossen, Md, Al Hasan, Shakib, Islam, Md Khairul, Iqbal, Zafar, Alibakhshikenari, Mohammad, Collotta, Mario, Miah, Md Sipon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13
container_end_page 143162
container_issue
container_start_page 143149
container_title IEEE access
container_volume 12
creator Mahim, S. M.
Emamul Hossen, Md
Al Hasan, Shakib
Islam, Md Khairul
Iqbal, Zafar
Alibakhshikenari, Mohammad
Collotta, Mario
Miah, Md Sipon
description Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection.
doi_str_mv 10.1109/ACCESS.2024.3467181
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10689527</ieee_id><doaj_id>oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a</doaj_id><sourcerecordid>oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13</originalsourceid><addsrcrecordid>eNpNkU1OwzAQhSMEElXpCWCRC6RkbMeO2UWhhUpFSLRdW5PYqVy5CXIiBJwe90eos5gZvdH7FvOi6B7SKUAqH4uynK1WU5ISNqWMC8jhKhoR4DKhGeXXF_ttNOn7XRoqD1ImRpFfe2z7N_ttfFLMn-JCf2FbGx1_GHTJ2u5N_GwGUw-2a-OuiYvBW3Tx3FbeOodHeTNYZ39tu41XoTmTLA3qeOaCy3c1em27rcd9uG5bdP1ddNOEYSbnOY4289m6fE2W7y-LslgmNeEwJJxQkULGc65RcKgkVkSnlLCKUN2gzmQjpEAudC5zQCkANW0ygikjjFdAx9HixNUd7tSnt3v0P6pDq45C57cK_WBrZ5QIbyMVEqBVxTIASXggM900DDUDDCx6YtW-63tvmn8epOqQgjqloA4pqHMKwfVwclljzIWD5zIjgv4B6_SDYQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</title><source>IEEE Open Access Journals</source><creator>Mahim, S. M. ; Emamul Hossen, Md ; Al Hasan, Shakib ; Islam, Md Khairul ; Iqbal, Zafar ; Alibakhshikenari, Mohammad ; Collotta, Mario ; Miah, Md Sipon</creator><creatorcontrib>Mahim, S. M. ; Emamul Hossen, Md ; Al Hasan, Shakib ; Islam, Md Khairul ; Iqbal, Zafar ; Alibakhshikenari, Mohammad ; Collotta, Mario ; Miah, Md Sipon</creatorcontrib><description>Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3467181</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Arrhythmia ; Atrial fibrillation ; Data models ; Deep learning ; detection algorithms ; Electrocardiography ; Feature extraction ; Heart beat ; Medical services ; Signal detection ; TransMixer-AF</subject><ispartof>IEEE access, 2024, Vol.12, p.143149-143162</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13</cites><orcidid>0000-0002-6973-1536 ; 0009-0008-7205-9390 ; 0000-0002-5426-8382 ; 0000-0003-0207-9966 ; 0000-0002-8263-1572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10689527$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mahim, S. M.</creatorcontrib><creatorcontrib>Emamul Hossen, Md</creatorcontrib><creatorcontrib>Al Hasan, Shakib</creatorcontrib><creatorcontrib>Islam, Md Khairul</creatorcontrib><creatorcontrib>Iqbal, Zafar</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Miah, Md Sipon</creatorcontrib><title>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection.</description><subject>Accuracy</subject><subject>Arrhythmia</subject><subject>Atrial fibrillation</subject><subject>Data models</subject><subject>Deep learning</subject><subject>detection algorithms</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heart beat</subject><subject>Medical services</subject><subject>Signal detection</subject><subject>TransMixer-AF</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1OwzAQhSMEElXpCWCRC6RkbMeO2UWhhUpFSLRdW5PYqVy5CXIiBJwe90eos5gZvdH7FvOi6B7SKUAqH4uynK1WU5ISNqWMC8jhKhoR4DKhGeXXF_ttNOn7XRoqD1ImRpFfe2z7N_ttfFLMn-JCf2FbGx1_GHTJ2u5N_GwGUw-2a-OuiYvBW3Tx3FbeOodHeTNYZ39tu41XoTmTLA3qeOaCy3c1em27rcd9uG5bdP1ddNOEYSbnOY4289m6fE2W7y-LslgmNeEwJJxQkULGc65RcKgkVkSnlLCKUN2gzmQjpEAudC5zQCkANW0ygikjjFdAx9HixNUd7tSnt3v0P6pDq45C57cK_WBrZ5QIbyMVEqBVxTIASXggM900DDUDDCx6YtW-63tvmn8epOqQgjqloA4pqHMKwfVwclljzIWD5zIjgv4B6_SDYQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mahim, S. M.</creator><creator>Emamul Hossen, Md</creator><creator>Al Hasan, Shakib</creator><creator>Islam, Md Khairul</creator><creator>Iqbal, Zafar</creator><creator>Alibakhshikenari, Mohammad</creator><creator>Collotta, Mario</creator><creator>Miah, Md Sipon</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6973-1536</orcidid><orcidid>https://orcid.org/0009-0008-7205-9390</orcidid><orcidid>https://orcid.org/0000-0002-5426-8382</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid></search><sort><creationdate>2024</creationdate><title>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</title><author>Mahim, S. M. ; Emamul Hossen, Md ; Al Hasan, Shakib ; Islam, Md Khairul ; Iqbal, Zafar ; Alibakhshikenari, Mohammad ; Collotta, Mario ; Miah, Md Sipon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Arrhythmia</topic><topic>Atrial fibrillation</topic><topic>Data models</topic><topic>Deep learning</topic><topic>detection algorithms</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heart beat</topic><topic>Medical services</topic><topic>Signal detection</topic><topic>TransMixer-AF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahim, S. M.</creatorcontrib><creatorcontrib>Emamul Hossen, Md</creatorcontrib><creatorcontrib>Al Hasan, Shakib</creatorcontrib><creatorcontrib>Islam, Md Khairul</creatorcontrib><creatorcontrib>Iqbal, Zafar</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Miah, Md Sipon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahim, S. M.</au><au>Emamul Hossen, Md</au><au>Al Hasan, Shakib</au><au>Islam, Md Khairul</au><au>Iqbal, Zafar</au><au>Alibakhshikenari, Mohammad</au><au>Collotta, Mario</au><au>Miah, Md Sipon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>143149</spage><epage>143162</epage><pages>143149-143162</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3467181</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6973-1536</orcidid><orcidid>https://orcid.org/0009-0008-7205-9390</orcidid><orcidid>https://orcid.org/0000-0002-5426-8382</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.143149-143162
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a
source IEEE Open Access Journals
subjects Accuracy
Arrhythmia
Atrial fibrillation
Data models
Deep learning
detection algorithms
Electrocardiography
Feature extraction
Heart beat
Medical services
Signal detection
TransMixer-AF
title TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TransMixer-AF:%20Advanced%20Real-Time%20Detection%20of%20Atrial%20Fibrillation%20Utilizing%20Single-Lead%20Electrocardiogram%20Signals&rft.jtitle=IEEE%20access&rft.au=Mahim,%20S.%20M.&rft.date=2024&rft.volume=12&rft.spage=143149&rft.epage=143162&rft.pages=143149-143162&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3467181&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_74672ba213bb45119267a64dff4ad41a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10689527&rfr_iscdi=true