Loading…
TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals
Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solut...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.143149-143162 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13 |
container_end_page | 143162 |
container_issue | |
container_start_page | 143149 |
container_title | IEEE access |
container_volume | 12 |
creator | Mahim, S. M. Emamul Hossen, Md Al Hasan, Shakib Islam, Md Khairul Iqbal, Zafar Alibakhshikenari, Mohammad Collotta, Mario Miah, Md Sipon |
description | Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection. |
doi_str_mv | 10.1109/ACCESS.2024.3467181 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10689527</ieee_id><doaj_id>oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a</doaj_id><sourcerecordid>oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13</originalsourceid><addsrcrecordid>eNpNkU1OwzAQhSMEElXpCWCRC6RkbMeO2UWhhUpFSLRdW5PYqVy5CXIiBJwe90eos5gZvdH7FvOi6B7SKUAqH4uynK1WU5ISNqWMC8jhKhoR4DKhGeXXF_ttNOn7XRoqD1ImRpFfe2z7N_ttfFLMn-JCf2FbGx1_GHTJ2u5N_GwGUw-2a-OuiYvBW3Tx3FbeOodHeTNYZ39tu41XoTmTLA3qeOaCy3c1em27rcd9uG5bdP1ddNOEYSbnOY4289m6fE2W7y-LslgmNeEwJJxQkULGc65RcKgkVkSnlLCKUN2gzmQjpEAudC5zQCkANW0ygikjjFdAx9HixNUd7tSnt3v0P6pDq45C57cK_WBrZ5QIbyMVEqBVxTIASXggM900DDUDDCx6YtW-63tvmn8epOqQgjqloA4pqHMKwfVwclljzIWD5zIjgv4B6_SDYQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</title><source>IEEE Open Access Journals</source><creator>Mahim, S. M. ; Emamul Hossen, Md ; Al Hasan, Shakib ; Islam, Md Khairul ; Iqbal, Zafar ; Alibakhshikenari, Mohammad ; Collotta, Mario ; Miah, Md Sipon</creator><creatorcontrib>Mahim, S. M. ; Emamul Hossen, Md ; Al Hasan, Shakib ; Islam, Md Khairul ; Iqbal, Zafar ; Alibakhshikenari, Mohammad ; Collotta, Mario ; Miah, Md Sipon</creatorcontrib><description>Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3467181</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Arrhythmia ; Atrial fibrillation ; Data models ; Deep learning ; detection algorithms ; Electrocardiography ; Feature extraction ; Heart beat ; Medical services ; Signal detection ; TransMixer-AF</subject><ispartof>IEEE access, 2024, Vol.12, p.143149-143162</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13</cites><orcidid>0000-0002-6973-1536 ; 0009-0008-7205-9390 ; 0000-0002-5426-8382 ; 0000-0003-0207-9966 ; 0000-0002-8263-1572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10689527$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mahim, S. M.</creatorcontrib><creatorcontrib>Emamul Hossen, Md</creatorcontrib><creatorcontrib>Al Hasan, Shakib</creatorcontrib><creatorcontrib>Islam, Md Khairul</creatorcontrib><creatorcontrib>Iqbal, Zafar</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Miah, Md Sipon</creatorcontrib><title>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection.</description><subject>Accuracy</subject><subject>Arrhythmia</subject><subject>Atrial fibrillation</subject><subject>Data models</subject><subject>Deep learning</subject><subject>detection algorithms</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heart beat</subject><subject>Medical services</subject><subject>Signal detection</subject><subject>TransMixer-AF</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1OwzAQhSMEElXpCWCRC6RkbMeO2UWhhUpFSLRdW5PYqVy5CXIiBJwe90eos5gZvdH7FvOi6B7SKUAqH4uynK1WU5ISNqWMC8jhKhoR4DKhGeXXF_ttNOn7XRoqD1ImRpFfe2z7N_ttfFLMn-JCf2FbGx1_GHTJ2u5N_GwGUw-2a-OuiYvBW3Tx3FbeOodHeTNYZ39tu41XoTmTLA3qeOaCy3c1em27rcd9uG5bdP1ddNOEYSbnOY4289m6fE2W7y-LslgmNeEwJJxQkULGc65RcKgkVkSnlLCKUN2gzmQjpEAudC5zQCkANW0ygikjjFdAx9HixNUd7tSnt3v0P6pDq45C57cK_WBrZ5QIbyMVEqBVxTIASXggM900DDUDDCx6YtW-63tvmn8epOqQgjqloA4pqHMKwfVwclljzIWD5zIjgv4B6_SDYQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mahim, S. M.</creator><creator>Emamul Hossen, Md</creator><creator>Al Hasan, Shakib</creator><creator>Islam, Md Khairul</creator><creator>Iqbal, Zafar</creator><creator>Alibakhshikenari, Mohammad</creator><creator>Collotta, Mario</creator><creator>Miah, Md Sipon</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6973-1536</orcidid><orcidid>https://orcid.org/0009-0008-7205-9390</orcidid><orcidid>https://orcid.org/0000-0002-5426-8382</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid></search><sort><creationdate>2024</creationdate><title>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</title><author>Mahim, S. M. ; Emamul Hossen, Md ; Al Hasan, Shakib ; Islam, Md Khairul ; Iqbal, Zafar ; Alibakhshikenari, Mohammad ; Collotta, Mario ; Miah, Md Sipon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Arrhythmia</topic><topic>Atrial fibrillation</topic><topic>Data models</topic><topic>Deep learning</topic><topic>detection algorithms</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heart beat</topic><topic>Medical services</topic><topic>Signal detection</topic><topic>TransMixer-AF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahim, S. M.</creatorcontrib><creatorcontrib>Emamul Hossen, Md</creatorcontrib><creatorcontrib>Al Hasan, Shakib</creatorcontrib><creatorcontrib>Islam, Md Khairul</creatorcontrib><creatorcontrib>Iqbal, Zafar</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Miah, Md Sipon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahim, S. M.</au><au>Emamul Hossen, Md</au><au>Al Hasan, Shakib</au><au>Islam, Md Khairul</au><au>Iqbal, Zafar</au><au>Alibakhshikenari, Mohammad</au><au>Collotta, Mario</au><au>Miah, Md Sipon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>143149</spage><epage>143162</epage><pages>143149-143162</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Atrial Fibrillation (AF) is a prevalent cardiac arrhythmia that carries an increased risk of stroke and heart failure. The manual interpretation of Electrocardiograms (ECGs) for diagnosing AF is time-consuming and subject to observer variability. Deep Learning (DL) techniques offer a promising solution for robust AF detection. This paper introduces a novel DL model that leverages ConvMixer and Transformer architecture, combining convolutional neural networks and attention mechanism to extract both local and global features from ECG data. It excels in accurately classifying ECG rhythms into two categories: normal and atrial fibrillation. Additionally, the model utilizes GradCAM++ visualization to provide interpretability. The model was evaluated using the PhysioNet/CinC 2017 Database, achieving accuracies of 91.66% on original data and 96.59% on preprocessed data. When applied to the the MIT-BIH Arrhythmia Database, it achieved accuracies of 95.86% on original data and 98.78% on preprocessed data, employing a ten-fold cross-validation strategy. This innovative approach has the potential to assist clinicians in the real-time detection of common atrial fibrillation during routine ECG screening, significantly enhancing the efficiency and accuracy of diagnosis. With a strong focus on improving patient outcomes and reducing the burden on healthcare professionals, this research represents a crucial step forward in cardiac arrhythmia detection.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3467181</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6973-1536</orcidid><orcidid>https://orcid.org/0009-0008-7205-9390</orcidid><orcidid>https://orcid.org/0000-0002-5426-8382</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.143149-143162 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_74672ba213bb45119267a64dff4ad41a |
source | IEEE Open Access Journals |
subjects | Accuracy Arrhythmia Atrial fibrillation Data models Deep learning detection algorithms Electrocardiography Feature extraction Heart beat Medical services Signal detection TransMixer-AF |
title | TransMixer-AF: Advanced Real-Time Detection of Atrial Fibrillation Utilizing Single-Lead Electrocardiogram Signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TransMixer-AF:%20Advanced%20Real-Time%20Detection%20of%20Atrial%20Fibrillation%20Utilizing%20Single-Lead%20Electrocardiogram%20Signals&rft.jtitle=IEEE%20access&rft.au=Mahim,%20S.%20M.&rft.date=2024&rft.volume=12&rft.spage=143149&rft.epage=143162&rft.pages=143149-143162&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3467181&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_74672ba213bb45119267a64dff4ad41a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-6237015686da761b9ab2d0324b23dfad59f797a67d8981a971ad3f52a04246b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10689527&rfr_iscdi=true |