Loading…

A Swin Transformer-based model for mosquito species identification

Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-11, Vol.12 (1), p.18664-13, Article 18664
Main Authors: Zhao, De-zhong, Wang, Xin-kai, Zhao, Teng, Li, Hu, Xing, Dan, Gao, He-ting, Song, Fan, Chen, Guo-hua, Li, Chun-xiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-8a18fe1073a0bb8cd2e9eb65a9e32a5ba686ed4620dfe2c0636e9b9bfe401e943
cites cdi_FETCH-LOGICAL-c540t-8a18fe1073a0bb8cd2e9eb65a9e32a5ba686ed4620dfe2c0636e9b9bfe401e943
container_end_page 13
container_issue 1
container_start_page 18664
container_title Scientific reports
container_volume 12
creator Zhao, De-zhong
Wang, Xin-kai
Zhao, Teng
Li, Hu
Xing, Dan
Gao, He-ting
Song, Fan
Chen, Guo-hua
Li, Chun-xiao
description Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.
doi_str_mv 10.1038/s41598-022-21017-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_749135d36474439da16b6bed2f49de01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_749135d36474439da16b6bed2f49de01</doaj_id><sourcerecordid>2731952181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-8a18fe1073a0bb8cd2e9eb65a9e32a5ba686ed4620dfe2c0636e9b9bfe401e943</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi1ERau2L8ACRWLDJmCPHSfeIJWKS6VKLFrWli-Tg4-S-NROinh7fJq2tCzwxqOZfz7P-CfkNaPvGeXdhyxYo7qaAtTAKGtr-YIcARVNDRzg5ZP4kJzmvKXlNKAEU6_IIZe8HNYdkU9n1dWvMFXXyUy5j2nEVFuT0Vdj9DhUJVWifLOEOVZ5hy5groLHaQ59cGYOcTohB70ZMp7e38fkx5fP1-ff6svvXy_Ozy5r1wg6151hXY-MttxQazvnARVa2RiFHExjjewkeiGB-h7BUcklKqtsj4IyVIIfk4uV66PZ6l0Ko0m_dTRB3yVi2miT5uAG1K1QjDeeS9EKwZU3TFpp0UMvlEfKCuvjytotdkTvyj7JDM-gzytT-Kk38VarMhbIPeDdPSDFmwXzrMeQHQ6DmTAuWUPLoRFAKS_St_9It3FJU_mqvYqpBli3B8KqcinmnLB_HIZRvXdcr47r4ri-c1zL0vTm6RqPLQ_-FgFfBbmUpg2mv2__B_sHqVa2Jg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731952181</pqid></control><display><type>article</type><title>A Swin Transformer-based model for mosquito species identification</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhao, De-zhong ; Wang, Xin-kai ; Zhao, Teng ; Li, Hu ; Xing, Dan ; Gao, He-ting ; Song, Fan ; Chen, Guo-hua ; Li, Chun-xiao</creator><creatorcontrib>Zhao, De-zhong ; Wang, Xin-kai ; Zhao, Teng ; Li, Hu ; Xing, Dan ; Gao, He-ting ; Song, Fan ; Chen, Guo-hua ; Li, Chun-xiao</creatorcontrib><description>Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-21017-6</identifier><identifier>PMID: 36333318</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/1386 ; 631/601/1466 ; 704/158/2178 ; Animals ; Aquatic insects ; Culex ; Deep learning ; Humanities and Social Sciences ; Humans ; Morphology ; Mosquito Vectors ; Mosquitoes ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Parasites ; Science ; Science (multidisciplinary) ; Species ; Vector-borne diseases</subject><ispartof>Scientific reports, 2022-11, Vol.12 (1), p.18664-13, Article 18664</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-8a18fe1073a0bb8cd2e9eb65a9e32a5ba686ed4620dfe2c0636e9b9bfe401e943</citedby><cites>FETCH-LOGICAL-c540t-8a18fe1073a0bb8cd2e9eb65a9e32a5ba686ed4620dfe2c0636e9b9bfe401e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2731952181/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2731952181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36333318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, De-zhong</creatorcontrib><creatorcontrib>Wang, Xin-kai</creatorcontrib><creatorcontrib>Zhao, Teng</creatorcontrib><creatorcontrib>Li, Hu</creatorcontrib><creatorcontrib>Xing, Dan</creatorcontrib><creatorcontrib>Gao, He-ting</creatorcontrib><creatorcontrib>Song, Fan</creatorcontrib><creatorcontrib>Chen, Guo-hua</creatorcontrib><creatorcontrib>Li, Chun-xiao</creatorcontrib><title>A Swin Transformer-based model for mosquito species identification</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.</description><subject>631/114/1305</subject><subject>631/114/1386</subject><subject>631/601/1466</subject><subject>704/158/2178</subject><subject>Animals</subject><subject>Aquatic insects</subject><subject>Culex</subject><subject>Deep learning</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Morphology</subject><subject>Mosquito Vectors</subject><subject>Mosquitoes</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parasites</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Species</subject><subject>Vector-borne diseases</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhi1ERau2L8ACRWLDJmCPHSfeIJWKS6VKLFrWli-Tg4-S-NROinh7fJq2tCzwxqOZfz7P-CfkNaPvGeXdhyxYo7qaAtTAKGtr-YIcARVNDRzg5ZP4kJzmvKXlNKAEU6_IIZe8HNYdkU9n1dWvMFXXyUy5j2nEVFuT0Vdj9DhUJVWifLOEOVZ5hy5groLHaQ59cGYOcTohB70ZMp7e38fkx5fP1-ff6svvXy_Ozy5r1wg6151hXY-MttxQazvnARVa2RiFHExjjewkeiGB-h7BUcklKqtsj4IyVIIfk4uV66PZ6l0Ko0m_dTRB3yVi2miT5uAG1K1QjDeeS9EKwZU3TFpp0UMvlEfKCuvjytotdkTvyj7JDM-gzytT-Kk38VarMhbIPeDdPSDFmwXzrMeQHQ6DmTAuWUPLoRFAKS_St_9It3FJU_mqvYqpBli3B8KqcinmnLB_HIZRvXdcr47r4ri-c1zL0vTm6RqPLQ_-FgFfBbmUpg2mv2__B_sHqVa2Jg</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>Zhao, De-zhong</creator><creator>Wang, Xin-kai</creator><creator>Zhao, Teng</creator><creator>Li, Hu</creator><creator>Xing, Dan</creator><creator>Gao, He-ting</creator><creator>Song, Fan</creator><creator>Chen, Guo-hua</creator><creator>Li, Chun-xiao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221104</creationdate><title>A Swin Transformer-based model for mosquito species identification</title><author>Zhao, De-zhong ; Wang, Xin-kai ; Zhao, Teng ; Li, Hu ; Xing, Dan ; Gao, He-ting ; Song, Fan ; Chen, Guo-hua ; Li, Chun-xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-8a18fe1073a0bb8cd2e9eb65a9e32a5ba686ed4620dfe2c0636e9b9bfe401e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/114/1305</topic><topic>631/114/1386</topic><topic>631/601/1466</topic><topic>704/158/2178</topic><topic>Animals</topic><topic>Aquatic insects</topic><topic>Culex</topic><topic>Deep learning</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Morphology</topic><topic>Mosquito Vectors</topic><topic>Mosquitoes</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parasites</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Species</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, De-zhong</creatorcontrib><creatorcontrib>Wang, Xin-kai</creatorcontrib><creatorcontrib>Zhao, Teng</creatorcontrib><creatorcontrib>Li, Hu</creatorcontrib><creatorcontrib>Xing, Dan</creatorcontrib><creatorcontrib>Gao, He-ting</creatorcontrib><creatorcontrib>Song, Fan</creatorcontrib><creatorcontrib>Chen, Guo-hua</creatorcontrib><creatorcontrib>Li, Chun-xiao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, De-zhong</au><au>Wang, Xin-kai</au><au>Zhao, Teng</au><au>Li, Hu</au><au>Xing, Dan</au><au>Gao, He-ting</au><au>Song, Fan</au><au>Chen, Guo-hua</au><au>Li, Chun-xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Swin Transformer-based model for mosquito species identification</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-11-04</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>18664</spage><epage>13</epage><pages>18664-13</pages><artnum>18664</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36333318</pmid><doi>10.1038/s41598-022-21017-6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-11, Vol.12 (1), p.18664-13, Article 18664
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_749135d36474439da16b6bed2f49de01
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
631/114/1386
631/601/1466
704/158/2178
Animals
Aquatic insects
Culex
Deep learning
Humanities and Social Sciences
Humans
Morphology
Mosquito Vectors
Mosquitoes
multidisciplinary
Neural networks
Neural Networks, Computer
Parasites
Science
Science (multidisciplinary)
Species
Vector-borne diseases
title A Swin Transformer-based model for mosquito species identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Swin%20Transformer-based%20model%20for%20mosquito%20species%20identification&rft.jtitle=Scientific%20reports&rft.au=Zhao,%20De-zhong&rft.date=2022-11-04&rft.volume=12&rft.issue=1&rft.spage=18664&rft.epage=13&rft.pages=18664-13&rft.artnum=18664&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-21017-6&rft_dat=%3Cproquest_doaj_%3E2731952181%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-8a18fe1073a0bb8cd2e9eb65a9e32a5ba686ed4620dfe2c0636e9b9bfe401e943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731952181&rft_id=info:pmid/36333318&rfr_iscdi=true