Loading…

3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow

Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular mov...

Full description

Saved in:
Bibliographic Details
Published in:IUCrJ 2020-03, Vol.7 (Pt 2), p.207-219
Main Authors: Monteiro, Diana C F, von Stetten, David, Stohrer, Claudia, Sans, Marta, Pearson, Arwen R, Santoni, Gianluca, van der Linden, Peter, Trebbin, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c632t-acc51eea056dafab81aeb1fb9360397fc51fb2400ea8ca4427f50dfcc55581c43
cites cdi_FETCH-LOGICAL-c632t-acc51eea056dafab81aeb1fb9360397fc51fb2400ea8ca4427f50dfcc55581c43
container_end_page 219
container_issue Pt 2
container_start_page 207
container_title IUCrJ
container_volume 7
creator Monteiro, Diana C F
von Stetten, David
Stohrer, Claudia
Sans, Marta
Pearson, Arwen R
Santoni, Gianluca
van der Linden, Peter
Trebbin, Martin
description Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.
doi_str_mv 10.1107/s2052252519016865
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74a58c278e7d47a18ac61380252e24ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616580386</galeid><doaj_id>oai_doaj_org_article_74a58c278e7d47a18ac61380252e24ec</doaj_id><sourcerecordid>A616580386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-acc51eea056dafab81aeb1fb9360397fc51fb2400ea8ca4427f50dfcc55581c43</originalsourceid><addsrcrecordid>eNpdUl1rFDEUHUSxpfYH-CIBXxScmo_JTNYHYWnVFlZ8UKFv4U4m2c2SmWyTmZX9Ff5l73ZraUseEs495yS59xTFa0bPGKPNx8yp5FxyyWaU1aqWz4rjPVTusecPzkfFac5rSiljXDYVe1kcCc4qparZcfFXXJTf_fXFJ4KHTfLDaDtyXSbYlSb2Gxh9GyzpvUnRhcl33pDObr2xmbiYSIKN7z6QEP8gfchTvxl9HEi2yUMgeTeYVYpjQsikXR4hhLhEzWpHOhiBmBiCNbcSPxCHNq-KFw5Ctqd3-0nx--uXX-eX5eLHt6vz-aI0teBjCcZIZi1QWXfgoFUMbMtcOxM1FbPGYdW1vKLUgjJQVbxxknYOVVIqZipxUlwdfLsIa40f7yHtdASvb4GYlhrS6E2wuqlAKsMbZZuuaoApMDUTimJvLa-sQa_PB6_N1Pa2M3YYE4RHpo8rg1_pZdzqhkopFEeD9weD1RPZ5Xyh9xgVDZeKzrYMue_uLkvxZrJ51L3PxoYAg41T1lw0UlIh5d727RPqOk5pwLYiq1bNTGEokHV2YC0BP-sHh_MCg6uzOPY4WOcRn9esxhcIVaOAHQSYiZyTdfdPZlTvo6l_Po0mat48bNG94n8QxT-jpN-h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368798000</pqid></control><display><type>article</type><title>3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Monteiro, Diana C F ; von Stetten, David ; Stohrer, Claudia ; Sans, Marta ; Pearson, Arwen R ; Santoni, Gianluca ; van der Linden, Peter ; Trebbin, Martin</creator><creatorcontrib>Monteiro, Diana C F ; von Stetten, David ; Stohrer, Claudia ; Sans, Marta ; Pearson, Arwen R ; Santoni, Gianluca ; van der Linden, Peter ; Trebbin, Martin</creatorcontrib><description>Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.</description><identifier>ISSN: 2052-2525</identifier><identifier>EISSN: 2052-2525</identifier><identifier>DOI: 10.1107/s2052252519016865</identifier><identifier>PMID: 32148849</identifier><language>eng</language><publisher>England: International Union of Crystallography</publisher><subject>3d microfabrication ; 3D printing ; 3d-mixd ; Chemical Sciences ; Consumption ; Crystallography ; Data collection ; Microcrystals ; Microfluidic devices ; microfluidics ; Proteins ; Research Papers ; Room temperature ; serial synchrotron crystallography ; structure determination ; Synchrotrons ; Three dimensional flow ; Three dimensional printing ; Time ; White, T.H. (British writer)</subject><ispartof>IUCrJ, 2020-03, Vol.7 (Pt 2), p.207-219</ispartof><rights>Diana C. F. Monteiro et al. 2020.</rights><rights>COPYRIGHT 2020 International Union of Crystallography</rights><rights>2020. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Diana C. F. Monteiro et al. 2020 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-acc51eea056dafab81aeb1fb9360397fc51fb2400ea8ca4427f50dfcc55581c43</citedby><cites>FETCH-LOGICAL-c632t-acc51eea056dafab81aeb1fb9360397fc51fb2400ea8ca4427f50dfcc55581c43</cites><orcidid>0000-0001-8499-7490 ; 0000-0001-8278-5865 ; 0000-0001-7906-9788 ; 0000-0001-6215-998X ; 0000-0001-9053-7722 ; 0000-0002-0102-8190 ; 0000-0002-3481-0787 ; 0000-0002-6318-7306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055382/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2368798000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32148849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03725809$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteiro, Diana C F</creatorcontrib><creatorcontrib>von Stetten, David</creatorcontrib><creatorcontrib>Stohrer, Claudia</creatorcontrib><creatorcontrib>Sans, Marta</creatorcontrib><creatorcontrib>Pearson, Arwen R</creatorcontrib><creatorcontrib>Santoni, Gianluca</creatorcontrib><creatorcontrib>van der Linden, Peter</creatorcontrib><creatorcontrib>Trebbin, Martin</creatorcontrib><title>3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow</title><title>IUCrJ</title><addtitle>IUCrJ</addtitle><description>Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.</description><subject>3d microfabrication</subject><subject>3D printing</subject><subject>3d-mixd</subject><subject>Chemical Sciences</subject><subject>Consumption</subject><subject>Crystallography</subject><subject>Data collection</subject><subject>Microcrystals</subject><subject>Microfluidic devices</subject><subject>microfluidics</subject><subject>Proteins</subject><subject>Research Papers</subject><subject>Room temperature</subject><subject>serial synchrotron crystallography</subject><subject>structure determination</subject><subject>Synchrotrons</subject><subject>Three dimensional flow</subject><subject>Three dimensional printing</subject><subject>Time</subject><subject>White, T.H. (British writer)</subject><issn>2052-2525</issn><issn>2052-2525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUl1rFDEUHUSxpfYH-CIBXxScmo_JTNYHYWnVFlZ8UKFv4U4m2c2SmWyTmZX9Ff5l73ZraUseEs495yS59xTFa0bPGKPNx8yp5FxyyWaU1aqWz4rjPVTusecPzkfFac5rSiljXDYVe1kcCc4qparZcfFXXJTf_fXFJ4KHTfLDaDtyXSbYlSb2Gxh9GyzpvUnRhcl33pDObr2xmbiYSIKN7z6QEP8gfchTvxl9HEi2yUMgeTeYVYpjQsikXR4hhLhEzWpHOhiBmBiCNbcSPxCHNq-KFw5Ctqd3-0nx--uXX-eX5eLHt6vz-aI0teBjCcZIZi1QWXfgoFUMbMtcOxM1FbPGYdW1vKLUgjJQVbxxknYOVVIqZipxUlwdfLsIa40f7yHtdASvb4GYlhrS6E2wuqlAKsMbZZuuaoApMDUTimJvLa-sQa_PB6_N1Pa2M3YYE4RHpo8rg1_pZdzqhkopFEeD9weD1RPZ5Xyh9xgVDZeKzrYMue_uLkvxZrJ51L3PxoYAg41T1lw0UlIh5d727RPqOk5pwLYiq1bNTGEokHV2YC0BP-sHh_MCg6uzOPY4WOcRn9esxhcIVaOAHQSYiZyTdfdPZlTvo6l_Po0mat48bNG94n8QxT-jpN-h</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Monteiro, Diana C F</creator><creator>von Stetten, David</creator><creator>Stohrer, Claudia</creator><creator>Sans, Marta</creator><creator>Pearson, Arwen R</creator><creator>Santoni, Gianluca</creator><creator>van der Linden, Peter</creator><creator>Trebbin, Martin</creator><general>International Union of Crystallography</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8499-7490</orcidid><orcidid>https://orcid.org/0000-0001-8278-5865</orcidid><orcidid>https://orcid.org/0000-0001-7906-9788</orcidid><orcidid>https://orcid.org/0000-0001-6215-998X</orcidid><orcidid>https://orcid.org/0000-0001-9053-7722</orcidid><orcidid>https://orcid.org/0000-0002-0102-8190</orcidid><orcidid>https://orcid.org/0000-0002-3481-0787</orcidid><orcidid>https://orcid.org/0000-0002-6318-7306</orcidid></search><sort><creationdate>20200301</creationdate><title>3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow</title><author>Monteiro, Diana C F ; von Stetten, David ; Stohrer, Claudia ; Sans, Marta ; Pearson, Arwen R ; Santoni, Gianluca ; van der Linden, Peter ; Trebbin, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-acc51eea056dafab81aeb1fb9360397fc51fb2400ea8ca4427f50dfcc55581c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3d microfabrication</topic><topic>3D printing</topic><topic>3d-mixd</topic><topic>Chemical Sciences</topic><topic>Consumption</topic><topic>Crystallography</topic><topic>Data collection</topic><topic>Microcrystals</topic><topic>Microfluidic devices</topic><topic>microfluidics</topic><topic>Proteins</topic><topic>Research Papers</topic><topic>Room temperature</topic><topic>serial synchrotron crystallography</topic><topic>structure determination</topic><topic>Synchrotrons</topic><topic>Three dimensional flow</topic><topic>Three dimensional printing</topic><topic>Time</topic><topic>White, T.H. (British writer)</topic><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Diana C F</creatorcontrib><creatorcontrib>von Stetten, David</creatorcontrib><creatorcontrib>Stohrer, Claudia</creatorcontrib><creatorcontrib>Sans, Marta</creatorcontrib><creatorcontrib>Pearson, Arwen R</creatorcontrib><creatorcontrib>Santoni, Gianluca</creatorcontrib><creatorcontrib>van der Linden, Peter</creatorcontrib><creatorcontrib>Trebbin, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK &amp; Ireland Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>IUCrJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Diana C F</au><au>von Stetten, David</au><au>Stohrer, Claudia</au><au>Sans, Marta</au><au>Pearson, Arwen R</au><au>Santoni, Gianluca</au><au>van der Linden, Peter</au><au>Trebbin, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow</atitle><jtitle>IUCrJ</jtitle><addtitle>IUCrJ</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>7</volume><issue>Pt 2</issue><spage>207</spage><epage>219</epage><pages>207-219</pages><issn>2052-2525</issn><eissn>2052-2525</eissn><abstract>Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.</abstract><cop>England</cop><pub>International Union of Crystallography</pub><pmid>32148849</pmid><doi>10.1107/s2052252519016865</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8499-7490</orcidid><orcidid>https://orcid.org/0000-0001-8278-5865</orcidid><orcidid>https://orcid.org/0000-0001-7906-9788</orcidid><orcidid>https://orcid.org/0000-0001-6215-998X</orcidid><orcidid>https://orcid.org/0000-0001-9053-7722</orcidid><orcidid>https://orcid.org/0000-0002-0102-8190</orcidid><orcidid>https://orcid.org/0000-0002-3481-0787</orcidid><orcidid>https://orcid.org/0000-0002-6318-7306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-2525
ispartof IUCrJ, 2020-03, Vol.7 (Pt 2), p.207-219
issn 2052-2525
2052-2525
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_74a58c278e7d47a18ac61380252e24ec
source Publicly Available Content Database; PubMed Central
subjects 3d microfabrication
3D printing
3d-mixd
Chemical Sciences
Consumption
Crystallography
Data collection
Microcrystals
Microfluidic devices
microfluidics
Proteins
Research Papers
Room temperature
serial synchrotron crystallography
structure determination
Synchrotrons
Three dimensional flow
Three dimensional printing
Time
White, T.H. (British writer)
title 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-MiXD:%203D-printed%20X-ray-compatible%20microfluidic%20devices%20for%20rapid,%20low-consumption%20serial%20synchrotron%20crystallography%20data%20collection%20in%20flow&rft.jtitle=IUCrJ&rft.au=Monteiro,%20Diana%20C%20F&rft.date=2020-03-01&rft.volume=7&rft.issue=Pt%202&rft.spage=207&rft.epage=219&rft.pages=207-219&rft.issn=2052-2525&rft.eissn=2052-2525&rft_id=info:doi/10.1107/s2052252519016865&rft_dat=%3Cgale_doaj_%3EA616580386%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c632t-acc51eea056dafab81aeb1fb9360397fc51fb2400ea8ca4427f50dfcc55581c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2368798000&rft_id=info:pmid/32148849&rft_galeid=A616580386&rfr_iscdi=true