Loading…
Theoretical Analysis and Experimental Evaluation of Wide-Lane Combination for Single-Epoch Positioning with BeiDou-3 Observations
Multi-frequency signals can enable some wide-lane (WL) observations to achieve instantaneous ambiguity resolution (AR) in complex scenarios, but simply adding WL observations will also place additional pressure on real-time kinematic data transmission. With the official service of the third-generati...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-12, Vol.16 (23), p.4404 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-2d31727c1818f3e75f023727bc0540e91dd3ea75ef9f3f74fb7ccc3469ff4f813 |
container_end_page | |
container_issue | 23 |
container_start_page | 4404 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 16 |
creator | Wang, Yulu Liu, Xin Zhang, Shubi |
description | Multi-frequency signals can enable some wide-lane (WL) observations to achieve instantaneous ambiguity resolution (AR) in complex scenarios, but simply adding WL observations will also place additional pressure on real-time kinematic data transmission. With the official service of the third-generation Beidou Navigation Satellite System, which broadcasts five-frequency signals, this dilemma has become increasingly evident. It is significant to explore multi-frequency observation combination methods that take into account both positioning precision and data transmission burden. In this work, we use the least squares method to derive the theoretical precision of the single-epoch WL combination of 16 schemes with varying frequency numbers (three or more) under the ionosphere-fixed model and the ionosphere-float model. The baseline solutions of 4.3 km and 93.56 km confirm that the positioning results are broadly consistent with the theoretical derivations under both models. In the ionosphere-fixed mode, the five-frequency scheme (B1C, B1I, B3I, B2b, B2a) yields the best positioning performance, improving the 3-dimensional positioning error standard deviation, circle error probable (CEP), and spherical error probable at 75% probability by 7.8%, 11.5%, and 6.7%, respectively, compared with the optimal triple-frequency scheme (B1C, B3I, B2a). Under the ionosphere-float model, the quad-frequency scheme (B1C, B3I, B2b, B2a) provides the best positioning performance, with only the CEP at 75% improving by 1.3% over the triple-frequency scheme. Given that the optimal triple-frequency scheme has a lower data volume, this work recommends it as the preferred scheme. |
doi_str_mv | 10.3390/rs16234404 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74c7dbd3561147d88f863251ac98e61d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819954311</galeid><doaj_id>oai_doaj_org_article_74c7dbd3561147d88f863251ac98e61d</doaj_id><sourcerecordid>A819954311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-2d31727c1818f3e75f023727bc0540e91dd3ea75ef9f3f74fb7ccc3469ff4f813</originalsourceid><addsrcrecordid>eNpNUU1vEzEQXSGQqNpe-AWWuCFt8deu7WMIgVaKVCRa9Wh57XHiaGMHe9PSI_8cp4uAmcOM3pt5mo-meUfwFWMKf8yF9JRxjvmr5oxiQVtOFX39X_62uSxlh6sxRhTmZ82vuy2kDFOwZkSLaMbnEgoy0aHVzwPksIc4VWb1aMajmUKKKHn0EBy0axMBLdN-CHEmfMroe4ibEdrVIdkt-pZKODEVQ09h2qJPED6nY8vQ7VAgP760lYvmjTdjgcs_8by5_7K6W16369uvN8vFurVUqqmljhFBhSWSSM9AdB5TVoHB4o5jUMQ5BkZ04JVnXnA_CGst473ynntJ2HlzM-u6ZHb6UFcz-VknE_QLkPJGm1zvMIIW3Ao3ONb1hHDhpPSyZ7QjxioJPXFV6_2sdcjpxxHKpHfpmOv1imaEc9IJ3ONadTVXbUwVDdGnKRtb3cE-2BTBh4ovJFGq44ycRvwwN9icSsng_45JsD69WP97MfsNMD2Yqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144157060</pqid></control><display><type>article</type><title>Theoretical Analysis and Experimental Evaluation of Wide-Lane Combination for Single-Epoch Positioning with BeiDou-3 Observations</title><source>Publicly Available Content Database</source><creator>Wang, Yulu ; Liu, Xin ; Zhang, Shubi</creator><creatorcontrib>Wang, Yulu ; Liu, Xin ; Zhang, Shubi</creatorcontrib><description>Multi-frequency signals can enable some wide-lane (WL) observations to achieve instantaneous ambiguity resolution (AR) in complex scenarios, but simply adding WL observations will also place additional pressure on real-time kinematic data transmission. With the official service of the third-generation Beidou Navigation Satellite System, which broadcasts five-frequency signals, this dilemma has become increasingly evident. It is significant to explore multi-frequency observation combination methods that take into account both positioning precision and data transmission burden. In this work, we use the least squares method to derive the theoretical precision of the single-epoch WL combination of 16 schemes with varying frequency numbers (three or more) under the ionosphere-fixed model and the ionosphere-float model. The baseline solutions of 4.3 km and 93.56 km confirm that the positioning results are broadly consistent with the theoretical derivations under both models. In the ionosphere-fixed mode, the five-frequency scheme (B1C, B1I, B3I, B2b, B2a) yields the best positioning performance, improving the 3-dimensional positioning error standard deviation, circle error probable (CEP), and spherical error probable at 75% probability by 7.8%, 11.5%, and 6.7%, respectively, compared with the optimal triple-frequency scheme (B1C, B3I, B2a). Under the ionosphere-float model, the quad-frequency scheme (B1C, B3I, B2b, B2a) provides the best positioning performance, with only the CEP at 75% improving by 1.3% over the triple-frequency scheme. Given that the optimal triple-frequency scheme has a lower data volume, this work recommends it as the preferred scheme.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16234404</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ambiguity resolution (mathematics) ; Analysis ; Artificial satellites ; Atmosphere, Upper ; BeiDou Navigation Satellite System ; BeiDou-3 ; Data transmission ; Efficiency ; Errors ; Information management ; Ionosphere ; Kinematics ; Least squares method ; Methods ; multi-frequency observation combination ; Navigation satellites ; optimal combination frequency ; Real time ; Satellite navigation systems ; Satellite observation ; Satellites ; Signal generation ; single-epoch AR ; Theoretical analysis</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-12, Vol.16 (23), p.4404</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-2d31727c1818f3e75f023727bc0540e91dd3ea75ef9f3f74fb7ccc3469ff4f813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3144157060/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3144157060?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wang, Yulu</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zhang, Shubi</creatorcontrib><title>Theoretical Analysis and Experimental Evaluation of Wide-Lane Combination for Single-Epoch Positioning with BeiDou-3 Observations</title><title>Remote sensing (Basel, Switzerland)</title><description>Multi-frequency signals can enable some wide-lane (WL) observations to achieve instantaneous ambiguity resolution (AR) in complex scenarios, but simply adding WL observations will also place additional pressure on real-time kinematic data transmission. With the official service of the third-generation Beidou Navigation Satellite System, which broadcasts five-frequency signals, this dilemma has become increasingly evident. It is significant to explore multi-frequency observation combination methods that take into account both positioning precision and data transmission burden. In this work, we use the least squares method to derive the theoretical precision of the single-epoch WL combination of 16 schemes with varying frequency numbers (three or more) under the ionosphere-fixed model and the ionosphere-float model. The baseline solutions of 4.3 km and 93.56 km confirm that the positioning results are broadly consistent with the theoretical derivations under both models. In the ionosphere-fixed mode, the five-frequency scheme (B1C, B1I, B3I, B2b, B2a) yields the best positioning performance, improving the 3-dimensional positioning error standard deviation, circle error probable (CEP), and spherical error probable at 75% probability by 7.8%, 11.5%, and 6.7%, respectively, compared with the optimal triple-frequency scheme (B1C, B3I, B2a). Under the ionosphere-float model, the quad-frequency scheme (B1C, B3I, B2b, B2a) provides the best positioning performance, with only the CEP at 75% improving by 1.3% over the triple-frequency scheme. Given that the optimal triple-frequency scheme has a lower data volume, this work recommends it as the preferred scheme.</description><subject>Ambiguity resolution (mathematics)</subject><subject>Analysis</subject><subject>Artificial satellites</subject><subject>Atmosphere, Upper</subject><subject>BeiDou Navigation Satellite System</subject><subject>BeiDou-3</subject><subject>Data transmission</subject><subject>Efficiency</subject><subject>Errors</subject><subject>Information management</subject><subject>Ionosphere</subject><subject>Kinematics</subject><subject>Least squares method</subject><subject>Methods</subject><subject>multi-frequency observation combination</subject><subject>Navigation satellites</subject><subject>optimal combination frequency</subject><subject>Real time</subject><subject>Satellite navigation systems</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Signal generation</subject><subject>single-epoch AR</subject><subject>Theoretical analysis</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vEzEQXSGQqNpe-AWWuCFt8deu7WMIgVaKVCRa9Wh57XHiaGMHe9PSI_8cp4uAmcOM3pt5mo-meUfwFWMKf8yF9JRxjvmr5oxiQVtOFX39X_62uSxlh6sxRhTmZ82vuy2kDFOwZkSLaMbnEgoy0aHVzwPksIc4VWb1aMajmUKKKHn0EBy0axMBLdN-CHEmfMroe4ibEdrVIdkt-pZKODEVQ09h2qJPED6nY8vQ7VAgP760lYvmjTdjgcs_8by5_7K6W16369uvN8vFurVUqqmljhFBhSWSSM9AdB5TVoHB4o5jUMQ5BkZ04JVnXnA_CGst473ynntJ2HlzM-u6ZHb6UFcz-VknE_QLkPJGm1zvMIIW3Ao3ONb1hHDhpPSyZ7QjxioJPXFV6_2sdcjpxxHKpHfpmOv1imaEc9IJ3ONadTVXbUwVDdGnKRtb3cE-2BTBh4ovJFGq44ycRvwwN9icSsng_45JsD69WP97MfsNMD2Yqg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wang, Yulu</creator><creator>Liu, Xin</creator><creator>Zhang, Shubi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Theoretical Analysis and Experimental Evaluation of Wide-Lane Combination for Single-Epoch Positioning with BeiDou-3 Observations</title><author>Wang, Yulu ; Liu, Xin ; Zhang, Shubi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-2d31727c1818f3e75f023727bc0540e91dd3ea75ef9f3f74fb7ccc3469ff4f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambiguity resolution (mathematics)</topic><topic>Analysis</topic><topic>Artificial satellites</topic><topic>Atmosphere, Upper</topic><topic>BeiDou Navigation Satellite System</topic><topic>BeiDou-3</topic><topic>Data transmission</topic><topic>Efficiency</topic><topic>Errors</topic><topic>Information management</topic><topic>Ionosphere</topic><topic>Kinematics</topic><topic>Least squares method</topic><topic>Methods</topic><topic>multi-frequency observation combination</topic><topic>Navigation satellites</topic><topic>optimal combination frequency</topic><topic>Real time</topic><topic>Satellite navigation systems</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Signal generation</topic><topic>single-epoch AR</topic><topic>Theoretical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yulu</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zhang, Shubi</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yulu</au><au>Liu, Xin</au><au>Zhang, Shubi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Analysis and Experimental Evaluation of Wide-Lane Combination for Single-Epoch Positioning with BeiDou-3 Observations</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>4404</spage><pages>4404-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Multi-frequency signals can enable some wide-lane (WL) observations to achieve instantaneous ambiguity resolution (AR) in complex scenarios, but simply adding WL observations will also place additional pressure on real-time kinematic data transmission. With the official service of the third-generation Beidou Navigation Satellite System, which broadcasts five-frequency signals, this dilemma has become increasingly evident. It is significant to explore multi-frequency observation combination methods that take into account both positioning precision and data transmission burden. In this work, we use the least squares method to derive the theoretical precision of the single-epoch WL combination of 16 schemes with varying frequency numbers (three or more) under the ionosphere-fixed model and the ionosphere-float model. The baseline solutions of 4.3 km and 93.56 km confirm that the positioning results are broadly consistent with the theoretical derivations under both models. In the ionosphere-fixed mode, the five-frequency scheme (B1C, B1I, B3I, B2b, B2a) yields the best positioning performance, improving the 3-dimensional positioning error standard deviation, circle error probable (CEP), and spherical error probable at 75% probability by 7.8%, 11.5%, and 6.7%, respectively, compared with the optimal triple-frequency scheme (B1C, B3I, B2a). Under the ionosphere-float model, the quad-frequency scheme (B1C, B3I, B2b, B2a) provides the best positioning performance, with only the CEP at 75% improving by 1.3% over the triple-frequency scheme. Given that the optimal triple-frequency scheme has a lower data volume, this work recommends it as the preferred scheme.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16234404</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2024-12, Vol.16 (23), p.4404 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_74c7dbd3561147d88f863251ac98e61d |
source | Publicly Available Content Database |
subjects | Ambiguity resolution (mathematics) Analysis Artificial satellites Atmosphere, Upper BeiDou Navigation Satellite System BeiDou-3 Data transmission Efficiency Errors Information management Ionosphere Kinematics Least squares method Methods multi-frequency observation combination Navigation satellites optimal combination frequency Real time Satellite navigation systems Satellite observation Satellites Signal generation single-epoch AR Theoretical analysis |
title | Theoretical Analysis and Experimental Evaluation of Wide-Lane Combination for Single-Epoch Positioning with BeiDou-3 Observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Analysis%20and%20Experimental%20Evaluation%20of%20Wide-Lane%20Combination%20for%20Single-Epoch%20Positioning%20with%20BeiDou-3%20Observations&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Wang,%20Yulu&rft.date=2024-12-01&rft.volume=16&rft.issue=23&rft.spage=4404&rft.pages=4404-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16234404&rft_dat=%3Cgale_doaj_%3EA819954311%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-2d31727c1818f3e75f023727bc0540e91dd3ea75ef9f3f74fb7ccc3469ff4f813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144157060&rft_id=info:pmid/&rft_galeid=A819954311&rfr_iscdi=true |