Loading…
Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited
The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intr...
Saved in:
Published in: | Applied sciences 2022-12, Vol.12 (23), p.11993 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3 |
container_end_page | |
container_issue | 23 |
container_start_page | 11993 |
container_title | Applied sciences |
container_volume | 12 |
creator | Sgourou, Efstratia N. Daskalopulu, Aspassia Tsoukalas, Lefteri H. Stamoulis, George Vovk, Ruslan V. Chroneos, Alexander |
description | The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge. |
doi_str_mv | 10.3390/app122311993 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74edc646b50e44199f71b604f00b6792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74edc646b50e44199f71b604f00b6792</doaj_id><sourcerecordid>2748521233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsFRv_oAFr65mMmnSeJNi_UBQ_Dh4Ckk6qyntpiZpwX_vakWcywwzL887vFV1BOwUUbMzu1oB5wigNe5UA86UbFCA2v0371eHOc9ZXxpwDGxQ3T7Rhrry2UzDhupXsinXOXSe6vJO9UMMXWkmsSvWl_o52S6HXGI6r68oLW0X1sv6kTYhh0Kzg2qvtYtMh799WL1ML58n183d_dXN5OKu8ShVafSIeyEcOo-glB9rpsABKqZJKE9OIgjEGYAF3jInSJLEEWnoz-TA4bC62XJn0c7NKoWlTZ8m2mB-FjG9GZtK8AsyStDMSyHdiJEQfTJt7yWZaBlzUmnes463rFWKH2vKxczjOnX9-4YrMR5x4Ii96mSr8inmnKj9cwVmvsM3_8PHL_F9dNA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748521233</pqid></control><display><type>article</type><title>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</title><source>Publicly Available Content Database</source><creator>Sgourou, Efstratia N. ; Daskalopulu, Aspassia ; Tsoukalas, Lefteri H. ; Stamoulis, George ; Vovk, Ruslan V. ; Chroneos, Alexander</creator><creatorcontrib>Sgourou, Efstratia N. ; Daskalopulu, Aspassia ; Tsoukalas, Lefteri H. ; Stamoulis, George ; Vovk, Ruslan V. ; Chroneos, Alexander</creatorcontrib><description>The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app122311993</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Cost control ; defect processes ; Dielectric properties ; Electric currents ; Electric fields ; Germanium ; Integrated circuits ; Machine learning ; microelectronic materials ; Receivers & amplifiers ; Semiconductor devices ; Semiconductors ; Silica ; Silicon ; Transistors</subject><ispartof>Applied sciences, 2022-12, Vol.12 (23), p.11993</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</citedby><cites>FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</cites><orcidid>0000-0002-2558-495X ; 0000-0003-1051-6302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748521233/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748521233?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sgourou, Efstratia N.</creatorcontrib><creatorcontrib>Daskalopulu, Aspassia</creatorcontrib><creatorcontrib>Tsoukalas, Lefteri H.</creatorcontrib><creatorcontrib>Stamoulis, George</creatorcontrib><creatorcontrib>Vovk, Ruslan V.</creatorcontrib><creatorcontrib>Chroneos, Alexander</creatorcontrib><title>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</title><title>Applied sciences</title><description>The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge.</description><subject>Artificial intelligence</subject><subject>Cost control</subject><subject>defect processes</subject><subject>Dielectric properties</subject><subject>Electric currents</subject><subject>Electric fields</subject><subject>Germanium</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>microelectronic materials</subject><subject>Receivers & amplifiers</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silica</subject><subject>Silicon</subject><subject>Transistors</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhhdRsFRv_oAFr65mMmnSeJNi_UBQ_Dh4Ckk6qyntpiZpwX_vakWcywwzL887vFV1BOwUUbMzu1oB5wigNe5UA86UbFCA2v0371eHOc9ZXxpwDGxQ3T7Rhrry2UzDhupXsinXOXSe6vJO9UMMXWkmsSvWl_o52S6HXGI6r68oLW0X1sv6kTYhh0Kzg2qvtYtMh799WL1ML58n183d_dXN5OKu8ShVafSIeyEcOo-glB9rpsABKqZJKE9OIgjEGYAF3jInSJLEEWnoz-TA4bC62XJn0c7NKoWlTZ8m2mB-FjG9GZtK8AsyStDMSyHdiJEQfTJt7yWZaBlzUmnes463rFWKH2vKxczjOnX9-4YrMR5x4Ii96mSr8inmnKj9cwVmvsM3_8PHL_F9dNA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sgourou, Efstratia N.</creator><creator>Daskalopulu, Aspassia</creator><creator>Tsoukalas, Lefteri H.</creator><creator>Stamoulis, George</creator><creator>Vovk, Ruslan V.</creator><creator>Chroneos, Alexander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2558-495X</orcidid><orcidid>https://orcid.org/0000-0003-1051-6302</orcidid></search><sort><creationdate>20221201</creationdate><title>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</title><author>Sgourou, Efstratia N. ; Daskalopulu, Aspassia ; Tsoukalas, Lefteri H. ; Stamoulis, George ; Vovk, Ruslan V. ; Chroneos, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Cost control</topic><topic>defect processes</topic><topic>Dielectric properties</topic><topic>Electric currents</topic><topic>Electric fields</topic><topic>Germanium</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>microelectronic materials</topic><topic>Receivers & amplifiers</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silica</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sgourou, Efstratia N.</creatorcontrib><creatorcontrib>Daskalopulu, Aspassia</creatorcontrib><creatorcontrib>Tsoukalas, Lefteri H.</creatorcontrib><creatorcontrib>Stamoulis, George</creatorcontrib><creatorcontrib>Vovk, Ruslan V.</creatorcontrib><creatorcontrib>Chroneos, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sgourou, Efstratia N.</au><au>Daskalopulu, Aspassia</au><au>Tsoukalas, Lefteri H.</au><au>Stamoulis, George</au><au>Vovk, Ruslan V.</au><au>Chroneos, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</atitle><jtitle>Applied sciences</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>23</issue><spage>11993</spage><pages>11993-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app122311993</doi><orcidid>https://orcid.org/0000-0002-2558-495X</orcidid><orcidid>https://orcid.org/0000-0003-1051-6302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-12, Vol.12 (23), p.11993 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_74edc646b50e44199f71b604f00b6792 |
source | Publicly Available Content Database |
subjects | Artificial intelligence Cost control defect processes Dielectric properties Electric currents Electric fields Germanium Integrated circuits Machine learning microelectronic materials Receivers & amplifiers Semiconductor devices Semiconductors Silica Silicon Transistors |
title | Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seventy-Five%20Years%20since%20the%20Point-Contact%20Transistor:%20Germanium%20Revisited&rft.jtitle=Applied%20sciences&rft.au=Sgourou,%20Efstratia%20N.&rft.date=2022-12-01&rft.volume=12&rft.issue=23&rft.spage=11993&rft.pages=11993-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app122311993&rft_dat=%3Cproquest_doaj_%3E2748521233%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748521233&rft_id=info:pmid/&rfr_iscdi=true |