Loading…

Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited

The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intr...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-12, Vol.12 (23), p.11993
Main Authors: Sgourou, Efstratia N., Daskalopulu, Aspassia, Tsoukalas, Lefteri H., Stamoulis, George, Vovk, Ruslan V., Chroneos, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3
cites cdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3
container_end_page
container_issue 23
container_start_page 11993
container_title Applied sciences
container_volume 12
creator Sgourou, Efstratia N.
Daskalopulu, Aspassia
Tsoukalas, Lefteri H.
Stamoulis, George
Vovk, Ruslan V.
Chroneos, Alexander
description The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge.
doi_str_mv 10.3390/app122311993
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_74edc646b50e44199f71b604f00b6792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74edc646b50e44199f71b604f00b6792</doaj_id><sourcerecordid>2748521233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsFRv_oAFr65mMmnSeJNi_UBQ_Dh4Ckk6qyntpiZpwX_vakWcywwzL887vFV1BOwUUbMzu1oB5wigNe5UA86UbFCA2v0371eHOc9ZXxpwDGxQ3T7Rhrry2UzDhupXsinXOXSe6vJO9UMMXWkmsSvWl_o52S6HXGI6r68oLW0X1sv6kTYhh0Kzg2qvtYtMh799WL1ML58n183d_dXN5OKu8ShVafSIeyEcOo-glB9rpsABKqZJKE9OIgjEGYAF3jInSJLEEWnoz-TA4bC62XJn0c7NKoWlTZ8m2mB-FjG9GZtK8AsyStDMSyHdiJEQfTJt7yWZaBlzUmnes463rFWKH2vKxczjOnX9-4YrMR5x4Ii96mSr8inmnKj9cwVmvsM3_8PHL_F9dNA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748521233</pqid></control><display><type>article</type><title>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</title><source>Publicly Available Content Database</source><creator>Sgourou, Efstratia N. ; Daskalopulu, Aspassia ; Tsoukalas, Lefteri H. ; Stamoulis, George ; Vovk, Ruslan V. ; Chroneos, Alexander</creator><creatorcontrib>Sgourou, Efstratia N. ; Daskalopulu, Aspassia ; Tsoukalas, Lefteri H. ; Stamoulis, George ; Vovk, Ruslan V. ; Chroneos, Alexander</creatorcontrib><description>The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app122311993</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Cost control ; defect processes ; Dielectric properties ; Electric currents ; Electric fields ; Germanium ; Integrated circuits ; Machine learning ; microelectronic materials ; Receivers &amp; amplifiers ; Semiconductor devices ; Semiconductors ; Silica ; Silicon ; Transistors</subject><ispartof>Applied sciences, 2022-12, Vol.12 (23), p.11993</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</citedby><cites>FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</cites><orcidid>0000-0002-2558-495X ; 0000-0003-1051-6302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748521233/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748521233?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sgourou, Efstratia N.</creatorcontrib><creatorcontrib>Daskalopulu, Aspassia</creatorcontrib><creatorcontrib>Tsoukalas, Lefteri H.</creatorcontrib><creatorcontrib>Stamoulis, George</creatorcontrib><creatorcontrib>Vovk, Ruslan V.</creatorcontrib><creatorcontrib>Chroneos, Alexander</creatorcontrib><title>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</title><title>Applied sciences</title><description>The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge.</description><subject>Artificial intelligence</subject><subject>Cost control</subject><subject>defect processes</subject><subject>Dielectric properties</subject><subject>Electric currents</subject><subject>Electric fields</subject><subject>Germanium</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>microelectronic materials</subject><subject>Receivers &amp; amplifiers</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silica</subject><subject>Silicon</subject><subject>Transistors</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhhdRsFRv_oAFr65mMmnSeJNi_UBQ_Dh4Ckk6qyntpiZpwX_vakWcywwzL887vFV1BOwUUbMzu1oB5wigNe5UA86UbFCA2v0371eHOc9ZXxpwDGxQ3T7Rhrry2UzDhupXsinXOXSe6vJO9UMMXWkmsSvWl_o52S6HXGI6r68oLW0X1sv6kTYhh0Kzg2qvtYtMh799WL1ML58n183d_dXN5OKu8ShVafSIeyEcOo-glB9rpsABKqZJKE9OIgjEGYAF3jInSJLEEWnoz-TA4bC62XJn0c7NKoWlTZ8m2mB-FjG9GZtK8AsyStDMSyHdiJEQfTJt7yWZaBlzUmnes463rFWKH2vKxczjOnX9-4YrMR5x4Ii96mSr8inmnKj9cwVmvsM3_8PHL_F9dNA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sgourou, Efstratia N.</creator><creator>Daskalopulu, Aspassia</creator><creator>Tsoukalas, Lefteri H.</creator><creator>Stamoulis, George</creator><creator>Vovk, Ruslan V.</creator><creator>Chroneos, Alexander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2558-495X</orcidid><orcidid>https://orcid.org/0000-0003-1051-6302</orcidid></search><sort><creationdate>20221201</creationdate><title>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</title><author>Sgourou, Efstratia N. ; Daskalopulu, Aspassia ; Tsoukalas, Lefteri H. ; Stamoulis, George ; Vovk, Ruslan V. ; Chroneos, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Cost control</topic><topic>defect processes</topic><topic>Dielectric properties</topic><topic>Electric currents</topic><topic>Electric fields</topic><topic>Germanium</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>microelectronic materials</topic><topic>Receivers &amp; amplifiers</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silica</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sgourou, Efstratia N.</creatorcontrib><creatorcontrib>Daskalopulu, Aspassia</creatorcontrib><creatorcontrib>Tsoukalas, Lefteri H.</creatorcontrib><creatorcontrib>Stamoulis, George</creatorcontrib><creatorcontrib>Vovk, Ruslan V.</creatorcontrib><creatorcontrib>Chroneos, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sgourou, Efstratia N.</au><au>Daskalopulu, Aspassia</au><au>Tsoukalas, Lefteri H.</au><au>Stamoulis, George</au><au>Vovk, Ruslan V.</au><au>Chroneos, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited</atitle><jtitle>Applied sciences</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>23</issue><spage>11993</spage><pages>11993-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The advent of the point-contact transistor is one of the most significant technological achievements in human history with a profound impact on human civilization during the past 75 years. Although the first transistor was made of germanium it was soon replaced by silicon, a material with lower intrinsic carrier mobilities but with a substantially better native oxide. Interestingly, more than two decades ago, germanium was once again considered as a mainstream microelectronic material, since the introduction of high-k dielectrics allowed the consideration of channel materials irrespective of the quality of their native oxide. After about 50 years of limited studies on the defect processes in germanium, the community once again focused on its applicability for mainstream electronic applications. Nevertheless, there are some bottlenecks that need to be overcome, and it was the aim of the present review to discuss the progress in the understanding of the defect processes of Ge.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app122311993</doi><orcidid>https://orcid.org/0000-0002-2558-495X</orcidid><orcidid>https://orcid.org/0000-0003-1051-6302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-12, Vol.12 (23), p.11993
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_74edc646b50e44199f71b604f00b6792
source Publicly Available Content Database
subjects Artificial intelligence
Cost control
defect processes
Dielectric properties
Electric currents
Electric fields
Germanium
Integrated circuits
Machine learning
microelectronic materials
Receivers & amplifiers
Semiconductor devices
Semiconductors
Silica
Silicon
Transistors
title Seventy-Five Years since the Point-Contact Transistor: Germanium Revisited
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seventy-Five%20Years%20since%20the%20Point-Contact%20Transistor:%20Germanium%20Revisited&rft.jtitle=Applied%20sciences&rft.au=Sgourou,%20Efstratia%20N.&rft.date=2022-12-01&rft.volume=12&rft.issue=23&rft.spage=11993&rft.pages=11993-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app122311993&rft_dat=%3Cproquest_doaj_%3E2748521233%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-952c44b3bc3177c89071b13709e47ceb631433d11a12f0b4e6e635e91e47eb1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748521233&rft_id=info:pmid/&rfr_iscdi=true